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Abstract We examine how non-competitiveness in financial markets affects the
choice of asset portfolios and the determination of equilibrium prices. In our model,
potential arbitrage is conducted by a few highly specialized institutional investors who
recognize and estimate the impact of their trades on financial prices. We apply a model
of economic equilibrium, based on Weretka (http://www.ssc.wisc.edu/~mweretka/
Research, 2007a), in which price effects are determined endogenously as part of the
equilibrium concept. For the case in which markets allow for perfect insurance, we
argue that the principle of no-arbitrage asset pricing is consistent with non-competitive
behavior of the arbitragers and extend the fundamental theorem of asset pricing to the
non-competitive setting.
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0 Introduction

The model of competitive equilibrium imposes the premise that all agents intervening
in the markets observe a price that they take as given: they assume that their trade in
the market, however large, can be made at that fixed price. In finance, the theory of the
determination of the prices of financial derivatives, and the formulæ derived from this
theory and applied in practice, are based on the premise that asset prices should per-
mit no costless and riskless opportunities for profit; under this condition, asset prices
embed an “objective” probability distribution that can be used to obtain the price of
any asset as its discounted expected return: this is the basic content of the Fundamen-
tal Theorem of Asset Pricing, of its applications (the Modigliani–Miller theorem, for
instance), and of the formulæ developed to price financial derivatives (for example, the
Black-Scholes formula). When the competitive model is applied in a setting of uncer-
tainty and trade of financial assets, the premise of finance holds at equilibrium: under
minimal assumptions, at competitive equilibrium prices there should be no arbitrage
opportunities, and hence the theory of asset pricing is immediately applicable.

The assumption that all traders ignore the impact of their trades on prices, however,
appears at odds with empirical evidence from crucial markets. In financial markets,
even as deep as NYSE or NASDAQ, the evidence is clear in this direction: large insti-
tutional traders have non-negligible price impacts, which they do take into account
when designing their trading strategies, and tools have been developed to implement
portfolio recompositions taking into account their price impacts.1

Attempts to develop a general equilibrium framework in which traders do take
into account their price impacts have so far proved to be less successful than their
competitive counterpart. The work initiated by Negishi (1961), though interesting,
either required the imposition of very strong assumptions, or gave highly complex,
intractable and inapplicable models: in the Negishi’s approach, traders were allowed
to have subjective perceptions of the price impact, which implied a great deal of arbi-
trariness on the determination of equilibria, unless the subjective conjectures where
exogenously restricted; later attempts to impose more structure to the definition of
equilibrium endowed the model with explicit strategic games, which came at the cost
of tractability.2

In this paper, we develop a model of complete thin financial markets. As in Shleifer
and Vishny (1997), we take the view that in many markets only a relatively few
highly specialized institutional investors have capacity to arbitrate prices, and that

1 For literature on this, see Keim and Madhavan (1996), Chan and Lakonishok (1995) and Perold (1988).
Importantly, these large traders constitute a very significant portion of volume of trade in financial markets:
see Gompers and Metrick (2001).
2 For a review of this literature, see Hart (1985).
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trade among such investors is the key price determinant. Shleifer and Vishny (1997)
consider a dynamic (three-period) model with one risky asset and price-taking arbitrag-
eurs. They depart from the frictionless setting by assuming that arbitrageurs, who are
perfectly informed about the fundamental value of an asset, can take positions against
the mispricing generated by noise traders using only (uninformed) investors’ capital.
In the agency model, Sheifer and Vishny show that, in scenarios with prolonged asset
mispricing, investors may lose confidence in arbitrageurs’ ability and refuse to provide
them with liquid capital. This can reduce the effectiveness of arbitrage. Our model
differs from the one proposed by Shleifer and Vishny in a number of respects: first, we
consider a model in which assets are traded only once; second, we endow our market
with a complete set of assets in which arbitrageurs are not constrained by capital; also,
unlike in Shleifer and Vishny, we study cross-asset rather than cross-period arbitrage.
3 We depart from the classic model by relaxing the price-taking assumption, a mecha-
nism different from the one studied by Shleifer and Vishny, and in this sense this paper
complements their analysis, by studing how the presence of price impact affects asset
prices and arbitrage opportunities, even in the absence of information asymmetries.

Our model is also related to the work of Zigrand (2004, 2006) who, in a
Cournot–Walras setting, studies arbitrage across segmented markets, each with mul-
tiple assets. In Zigrand (2004, 2006), in each of the individual markets, there are no
arbitrage opportunities across assets no arbitrage, and the existence of pricing kernel
straightforwardly follows from the presence of price taking traders, but there may
be arbitrage opportunities for agents who can trade across markets. In this paper, we
focus on one market with all large, and hence non-competitive, arbitrageurs. Our main
result shows that no-arbitrage and pricing kernel are consistent with equilibrium, even
without the presence of perfectly competitive traders.

We apply a model of economic equilibrium, based on Weretka (2007a), in which
all individual traders recognize the impact that their trades have on financial prices,
and in which these effects are determined endogenously as part of the equilibrium
concept.4 This model maintains the flexible, tractable and spare structure of the com-
petitive model, but the departure from the competitive premise implies that none of the
standard positive or normative results are immediately applicable, and, in particular,
the necessity of a no-arbitrage condition, and the derivation of an objective proba-
bility have to be argued. We show that, even in the absence of competitive behavior,
the principle of no-arbitrage is consistent with equilibrium pricing in financial mar-
kets, and we extend the Fundamental Theorem of Asset Pricing to the noncompetitive
setting; to the best of our knowledge, there is no previous study of noncompetitive
markets with many arbitrary assets that possibly have collinear payoffs.5 In this paper,
we concentrate on the case in which the existing financial markets allow for complete
insurance against risk.

3 The dynamic arbitrage with non-competitive traders is studied in detail in Rostek and Weretka (2009).
4 This is the feature that closes the definition of equilibrium imposing interesting structure.
5 In the important literature on financial microstructure, starting with Kyle (1989), price impacts of the
traders result from asymmetric information, rather than from the thinness of the markets. We believe that
our work is complementary to this literature.
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Our conclusions differ from the ones obtained by Koutsougeras (2003) and
Koutsougeras and Papadapoulos (2004), where they exhibit noncompetitive markets
whose equilibrium prices allow for arbitrage opportunities. This result holds for Nash
equilibria, under the assumption that the assets are traded on strategic market games,
a-la Shapley and Shubik (1977). Our concept of equilibrium is different, in a sense
that is explained below, and allows for the possibility that each trader believes that her
trades have cross-market price effects, while Nash behavior in Shapley-Shubik games
does not.

This paper is part of a research program in which we study the properties of abstract
thin markets. As a part of this program, Weretka (2007b) shows that the concept of
equilibrium from this paper refines a Subgame Perfect Nash equilibrium in the game
with demand schedules (Walrasian Auction). Our framework thus generalizes strategic
models based on symmetric Linear Bayesian Nash equilibirum6 to environments with
heterogenous, non-quadratic utility functions and many, possibly redundant assets.
There, it is also argued that the equilibrium outcome will be observed in anonymous
markets, in which investors have no other information but their past trades and mar-
ket prices, and therefore they discover market power through a statistical inference
by estimating slopes of their demands using Market Impact Models. Therefore the
equilibrium has a game theoretic foundation endowed with the learning process by
which anonymous financial markets converge to this equilibrium. We believe that the
assumption of anonymity is a realistic assumption in financial markets, in which large
institutional investors know that they have price impacts, but often have no informa-
tion about those with whom they are trading. Finally, Weretka (2007a) demonstrates
that price impacts of the traders become negligible in economies with large number
of traders and hence our thin market model provides a foundation for a competitive
complete market model.

1 The Economy

Consider a financial market that evolves over two periods. Suppose that in the second
period there is a finite number of states of the world, indexed by s = 1, . . . , S, while in
the first period investors trade assets that deliver a return in the second period. There is
only one good, the numèraire, and all assets are denominated in this commodity. There
is a finite number of assets, indexed by a = 1, . . . , A, and their payoffs are uncer-
tain: in the second period, asset a pays Ra

s in state s. Vector Ra = (Ra
1 , . . . , Ra

S)T

is a commonly known random variable, and matrix R = (R1, . . . , R A), which is of
dimensions S × A, denotes the financial structure of the economy.7 We restrict our
attention to complete financial markets: we assume that there are at least as many assets
with linearly independent payoffs as states of the world. Then, without further loss
of generality, we assume that the first S assets are linearly independent: we partition
R = (RS, RA−S), and assume that the S × S matrix RS is nonsingular.

6 See Kyle (1989) or Vayanos (1999). Our model is more restrictive than the one considered in these two
papers, in that in our model there is no asymmetric information.
7 If we denote by In the n × n identity matrix, then R = IS is the case of a full set of elementary securities.
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There is a finite number of investors, who trade assets among themselves; a typical
investor is indexed by i = 1, . . . , I . Investor i is endowed with a future wealth of
ei

s > 0, contingent on the state of the world, and we denote by ei = (ei
1, . . . , ei

S) the
random variable representing investor i’s future endowment of wealth. Each trader
has preferences with respect to her wealth (or consumption) in the second period,
with cardinal utility indices ui

s : R++ → R. We assume that each utility index is
twice continuously differentiable, differentiably strictly monotonic and differentiably
strictly concave, and satisfies Inada conditions. For notational simplicity, henceforth
we write ui ((ci

s)
S
s=1) = ∑

s ui
s(c

i
s); by our assumptions, ∂ui � 0,8 while ∂2ui is a

diagonal, negative definite matrix. Given the assumptions, our model accommodates
standard von Neumann–Morgenstern preferences in which expected utility for each
trader is determined for arbitrary probabilistic beliefs, that can be heterogenous across
traders.

The economy is completely characterized by the triple of a profile of individual
preferences, a profile of future endowments of wealth and an asset payoff structure,
namely {u, e, R} = {(ui )I

i=1, (e
i )I

i=1, R}.

2 Equilibrium in thin markets

As there is only one commodity, trade takes place only in the market for assets in
the first period. Asset prices are denoted by P = (P1, . . . , PA)T, and the portfolio of
trader i is denoted by �i .9 For each investor i , let Mi

a,a′ measure individual her belief
of how the price of asset a changes when she expands her buy order for asset a′ by
one share. In the competitive model, this measure is exogenously fixed at zero; here,
we follow Weretka (2007a) in letting Mi

a,a′ be endogenously determined as part of the
equilibrium concept. The A × A matrix

Mi =
⎛

⎜
⎝

Mi
1,1 · · · Mi

1,A
...

. . .
...

Mi
A,1 · · · Mi

A,A

⎞

⎟
⎠ (1)

will be referred to as trader i’s price impact matrix: she believes that the price change
exerted by a perturbation � to her portfolio is Mi�. We will restrict attention only
to positive definite and symmetric price impact matrices, and it will be a part of the
definition of equilibrium that the profile of individual matrices is mutually consistent,
in the sense that each matrix Mi correctly measures the price impacts of trader i , given
the individual price impacts perceived by all other traders in the market.

Intuitively, an equilibrium in thin financial markets will be a triple consisting of a
vector of asset prices, a profile of portfolios and a profile of price impact matrices,
(P̄, �̄, M̄), such that:

8 We take this vector as a column.
9 This means that the future numèraire wealth of investor i is given by ei + R�i , while the cost of her
portfolio, if she constitutes it at prices P̃ , is P̃ · �i , which she incurs in the first period.
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1. all markets clear;
2. all traded portfolios are individually optimal, given the price impacts perceived

by agents: for each trader i , at prices P̄ , trade �̄i is optimal, given that any other
trade, �̃i , would change prices to P̄ + M̄i (�̃i − �̄i ); and

3. all perceived price impact matrices correctly estimate the effects of individual port-
folio perturbations on the prices that would be required for the rest of the market
to optimally absorb them: for each trader i , (small) perturbations to her portfolio,
�i , uniquely define a price at which the other traders of the market, given their
price impacts, are willing to supply �i to i , and the derivative of this mapping at
equilibrium trade �̄i is M̄i .

The first condition in the definition is standard, as in the definition of competitive
equilibrium; the other two are not, so we now proceed to their formal presentation.

2.1 Stable individual trade

Here, each trader perceives that her trade affects prices, and takes these impacts into
account when designing her investment strategy. We assume that trader i wants to
maximize the ex-ante utility of her future wealth, net of the present cost of constitut-
ing her portfolio.10 Critically, when computing the cost of constituting her portfolio,
trader i will take into account (her perception of) the effect that her portfolio has on
prices. To avoid confusion with the competitive model, we refer to this condition as
stability.

Definition 1 Given prices P and a price impact matrix Mi , portfolio �̄i is stable for
individual i if it solves program

max
�i

−(P + Mi (�i − �̄i )) · �i + ui (ei + R�i ). (2)

The second condition in the definition of equilibrium will be the requirement that,
given their beliefs on price impacts, no trader will find that she can increase her (net)
ex-ante utility by demanding a different portfolio: trader i’s portfolio should be stable
given equilibrium prices and her perceived price impacts at equilibrium trade.11 It

10 Formally, we are assuming that individual preferences are quasilinear on the wealth of the first period.
We will not impose non-negativity constraints on this variable, hence we do not need to specify individual
endowments of present wealth.
11 Suppose that trader i is faced with the inverse demand function

p(�) = P + Mi (� − �̄) · � (3)

from the rest of the market, where �̄ is some reference point. For each �̄, let

�i (�̄) = argmax� − (P + Mi (� − �̄)) · � + ui (ei + R�). (4)

The stability condition requires that �̄i be a fixed point of this mapping.
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requires that for each trader, given her price impact, no deviation from the equilibrium
trade be able improve her ex-ante utility.12

Given the assumption of strong concavity of preferences and the condition that price
impact matrices are to be positive definite, stability of portfolio �̄i , given (P, Mi ), is
characterized by the condition that

P + Mi �̄i = RT∂ui (ei + R�̄i ). (5)

2.2 Subequilibrium and consistent price impact matrices

The third condition of the definition of equilibrium requires the perceived price impacts
of all traders to be accurate estimates of their actual price impacts, at least locally and
to a first order, given the perceived price impacts of every other trader. Unlike in a
competitive market, each trader here knows that prices must endogenously adjust to
encourage other traders to (optimally) accommodate her trade. Consequently, in this
model markets clear and other investors respond optimally to prices, even if one of
the investors is trading a suboptimal portfolio; this feature is captured by the notion
of subequilibrium in financial markets, defined below.

Definition 2 Given an individual i and a profile of price impact matrices for all traders
but i, M−i = (M j ) j �=i , a subequilibrium triggered by trade �̃i is a pair of a vector
prices and a profile of trades by all other investors, (P̃, �̃−i ), such that:

1. all markets clear: �̃i + ∑
j �=i �̃ j = 0;

2. all traders other than i act optimally: for each j �= i , trade �̃ j is stable given
(P̃, M j ).

For each i , let S i (�̃i ; M−i ) be the set of all subequilibria triggered by trade �̃i ,
given that the other traders in the market perceive their price impacts as M−i , and let
P i (�̃i ; M−i ) be the projection of that set into the space of prices. If P i (�̃i ; M−i ) is
singleton-valued in a neighborhood of some �̄i , it defines, at least locally, an inverse
demand function, Pi (�̃i ), faced by trader i given M−i . If such function is differ-
entiable, trader i can estimate its derivatives. The condition of consistency of price
impact matrices is that, at equilibrium, perceived price impacts should not be arbi-
trary: each trader is able to estimate the slope of her real inverse demand, so that the
inverse demand function implicit in the condition of stability of her trade is a correct
first-order approximation to her real inverse demand, given the estimations made by
all other traders.13 This concept of mutual consistency of price impact estimations,
which completes the definition of equilibrium, is formalized next.

12 Of course, the trader can always feasibly trade nothing (that is, � = 0), which is costless regardless of
the value of �̄. Still, the null portfolio would exert some price effects, which are understood as the effects
of leaving the market, or “undoing” the demand �̄.
13 The approximation assures that in the definition of stability the second order condition is always satisfied.
Otherwise, the approximation is without loss of generality.

123



www.manaraa.com

230 A. Carvajal, M. Weretka

Definition 3 A profile M̄ of price impact matrices (for all traders) is mutually con-
sistent given prices and trades (P̄, �̄) if, for each individual i , there exist open neigh-
borhoods N i (�̄i ) and N i (P̄), and a differentiable function Pi : N i (�̄i ) → N i (P̄),
such that:

1. locally, Pi is the inverse demand faced by i :

P i (�̃i ; M−i ) ∩ N i (P̄) = {Pi (�̃i )} (6)

for every �̃i ∈ N i (�̄i ); and
2. matrix M̄i is a correct estimation of the Jacobean of Pi at �̄i : ∂ Pi (�̄i ) = M̄i .

Note that consistency is imposed on the whole profile of individual matrices, and
not matrix by matrix: the second and third conditions of the definition require that
∂�̃i Pi (�̄i ; M−i ) = Mi for every trader.14 Intuitively, consistent price impact matri-
ces reflect the price changes needed to clear the market for any small deviation �̃i by
trader i , given that other traders respond rationally to market prices in any subequi-
librium. This means that each trader correctly estimates her price impact, to a first
order, and incorporates this information into her individual decision problem. This
contrasts with the competitive model, in which traders incorrectly assume that their
price impacts are null;15 put simply, traders in thin markets do not act as price takers,
and behave as “slope takers” instead.

2.3 Equilibrium

The three principles of equilibrium in thin financial markets have now been introduced:
equilibrium is a triple of prices, trades and perceptions of price impacts such that all
markets clear; all traders are acting optimally, given the perception they hold of their
price impacts; and these perceptions are accurate estimates of the actual price impacts
exerted by the traders.

Definition 4 An equilibrium in thin financial markets for economy {u, e, R} is a tri-
ple consisting of a vector of asset prices, a profile of portfolios and a profile of price
impact matrices, (P̄, �̄, M̄), such that:

1.
∑

i �̄i = 0;
2. for each trader i , trade �̄i is stable given (P̄, M̄i ); and

14 Strictly speaking, the intuition given before the definition is slightly weaker than the definition itself:
we do not require that subequilibrium prices be unique (i.e., that P i (�̃i ; M−i ) be singleton-valued), but
only that they be determinate, or locally unique.
15 The null price-impact beliefs assumed by the competitive model constitute an inconsistent profile M :
if all traders but one believe that they exert no effect on prices, then the remaining trader faces, under our
assumptions, a downward sloping demand function; if she is to have a correct estimate of the slope of the
demand she faces, she cannot act as in the competitive model. However, competitive behavior appears as
the limit of our model as markets deepen: let (P̄, �̄) be the unique competitive equilibrium of economy
{U, e}, and for each n ∈ N, let (Pn ,�n , Mn) be an equilibrium for its n-fold replica, with the property that
all Mi

n give no irrelevant impact; then, (Pn , �n , Mn) → (P̄, �̄, 0), as shown by Weretka (2007b).
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3. the profile of price impact matrices M̄ is mutually consistent, given prices and
trades (P̄, �̄).

Importantly, note that at equilibrium all trades take place at prices P̄ . The follow-
ing lemma provides a characterization of equilibrium for the case when there are no
redundant assets in the market. For simplicity of notation, given an array of I − 1
positive definite matrices, �, let H(�) denote the harmonic average of the array.16

Lemma 1 Suppose that R is nonsingular.17 Then, (P̄, �̄, M̄) is an equilibrium in thin
financial markets for economy {u, e, A} if, and only if,

1.
∑

i �̄i = 0;
2. for each trader i, P + Mi �̄i = RT∂ui (ei + R�̄i );
3. for each trader i ,

Mi = 1

I − 1
H((M j − RT∂2u j (e j + R�̄ j )R) j �=i ). (7)

Proof See Appendix A1. �	

3 Arbitrage and irrelevant price impacts

The primary objective of this paper is to demonstrate that equilibrium in thin financial
markets is not inconsistent with the standard no-arbitrage principle. Therefore, we
now review the concept of no-arbitrage, introduce a weaker version of that principle,
and also introduce an analogous condition, which we call the “no irrelevant impact”
condition, for price impact matrices, and discuss its implication for economies with
elementary securities.

3.1 No-arbitrage

A vector of asset prices P allows no arbitrage opportunities if R� > 0 implies
P · � > 0. It is well known that price vector P allows no-arbitrage opportunities
if, and only if, there exists a vector of strictly positive “state prices,” p ∈ RS++, that
determines the value of income in each state of the world: P = RT p. Consequently,
the set of asset prices that allow no arbitrage opportunities is the convex, open, positive
cone

{P ∈ RA|∃p ∈ RS++ : P = RT p}. (8)

A weaker condition of no-arbitrage would be the requirement that portfolios whose
future return is zero in all states of the world should have zero cost at market prices.18

16 That is, H((� j ) j∈J ) = (I − 1)(
∑

j∈J (� j )−1)−1.
17 So that A = S and RS = R.
18 In other words, the “law of one price” would apply in the asset markets, in the sense that doing and
undoing some trade in commodities always has null cost.
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That is, we will say that a vector of asset prices P allows no weak arbitrage opportu-
nities if R� = 0 implies P · � = 0. This weaker no-arbitrage condition amounts to a
relaxation of the requirement that state prices be strictly positive, as in the following
lemma.

Lemma 2 The set of asset prices that allow no weak arbitrage opportunities is

{P ∈ RA|∃p ∈ RS : P = RT p}. (9)

Proof See Appendix A1. �	
If a trader who has monotone preferences and takes prices as given can find an

optimal portfolio, it must be that the prices of the assets allow neither strong nor weak
arbitrage opportunities; in particular, in a competitive equilibrium of the economy we
are considering there can be no arbitrage opportunities. In the following sections we
show that when markets are thin, only the weak notion of no-arbitrage is implied by
optimization of a rational agent.19 In order to claim the strong no-arbitrage condition,
one also needs to invoke the market clearing condition.

Henceforth, we say that a pair of vectors of prices (P, p) ∈ RA × RS is R-asso-
ciated if they satisfy P = RT p. By our assumption that markets are complete, it is
immediate that (P, p) is R- associated only if p = (RT

S )−1(P1, . . . , PS)T. Conse-
quently, R-association of prices defines a bijection between the linear subspace of all
asset prices P satisfying the weak no-arbitrage condition, set (9), and RS . In the case
of strong arbitrage, such bijection is between a convex cone, set (8), and RS++.

If (P, p) is R-associated and P allows no arbitrage opportunities in the strong sense,
then vector (

∑
s ps)

−1 p � 0 is a probability measure often referred to as the pric-
ing kernel implied by P . Similarly, if P allows no weak arbitrage opportunities, then
vector p can be interpreted as a (weak) pricing kernel implied by P . Note, however,
that the weak pricing kernel does not have to be a probability measure since prices do
not necessarily sum up to one and for some states they can even take negative values.

3.2 Price impact

A condition on price impact matrices that is analogous to the no-arbitrage principle
on asset prices is the requirement that only portfolios with non-zero future payoff
should affect prices. That is, we say that a price impact matrix Mi gives no irrelevant
impact if R�i = 0 implies Mi�i = 0.20 Technically, Mi gives no irrelevant impact
if the kernel of matrix Mi contains the kernel of matrix R. It is immediate that, under
this condition, portfolios with identical payoffs should have identical price effects.
The next result provides a unique decomposition for symmetric matrices that give no
irrelevant price impact; for any Mi define mi = (RT

S )−1 Mi
S(RS)−1, where Mi

S is the
S × S leading principal minor of matrix Mi .

19 For this result, one also needs to assume the condition of no irrelevant impact, defined in the following
section.
20 Analogously to footnote 18, this condition can be seen as a “law of one price impact.”
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Lemma 3 Let Mi be an A × A, symmetric price impact matrix. If Mi gives no irrel-
evant impact, then

1. Mi can be written as Mi = RT mi R; and
2. mi is the only matrix that allows for such decomposition of Mi .

Proof See Appendix A1. �	
In the same vein as with prices, we say that a pair of an A × A matrix and an S × S

matrix (Mi , mi ) is R-associated if Mi = RTmi R. From Lemma 3, it follows that
if Mi is symmetric and gives no irrelevant impact, then (Mi , mi ) is R-associated if,
and only if, mi = (RT

S )−1 Mi
S(RS)−1. Consequently, R-association defines a bijection

between these sets of A × A and S × S matrices. The next two results show that
the presence of one investor who trades optimally and whose trade has no irrelevant
impact is sufficient for the weak no-arbitrage condition.

Proposition 1 Suppose that price impact matrix M̄i gives no irrelevant impact, and
that there exists a portfolio �̄i that is stable for i given (P̄, M̄i ). Then, prices P̄ allow
no weak arbitrage opportunities.

Proof By stability of the individual’s portfolio, it follows that

P̄ + M̄i �̄i = RT∂ui (ei + R�̄i ). (10)

Multiplying (10) by any �i such that R�i = 0 gives

P̄ · �i = ∂ui (ei + R�̄i )T R�i − (�̄i )T M̄i� = 0, (11)

since M̄i gives no irrelevant price impact. �	
Intuitively, changes in the portfolio that do not affect payoffs do not alter con-

sumption either, and, hence, do not change the marginal rate of substitution between
assets. Since, at an optimum, the marginal rate of substitution equals marginal revenue,
P̄ + M̄i �̄i , the latter is not affected either. But, with no irrelevant impact, marginal
revenue is constant only if prices are orthogonal to zero-payoff portfolios.

Corollary 1 If (P̄, �̄, M̄) is an equilibrium in thin financial markets for {u, e, R},
and if for at least one trader her price impact matrix gives no irrelevant impact, then
P̄ allows no weak arbitrage opportunities, and there exists a (weak) pricing kernel,
p ∈ RS such that P = RT p.

Proof This follows from Proposition 1 and Lemma 2. �	
The next result now demonstrates that, in equilibrium, if all traders but one estimate

that they have no irrelevant price impact, then that remaining trader will automatically
have no irrelevant impact.

Proposition 2 Let (P̄, �̄, M̄) be an equilibrium in thin financial markets for economy
{u, e, R}. If for all traders j �= i their price impact matrices give no irrelevant price
impact, then matrix M̄i gives no irrelevant impact either.
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Before the proof of the proposition, we introduce a lemma whose proof we again
defer to Appendix A1.

Lemma 4 Return-equivalent deviations trigger the same subequilibrium prices: Fix
an individual i and a profile of price impact matrices for all traders but i, M̄−i =
(M̄ j ) j �=i , and suppose that each matrix M̄ j gives no irrelevant price impact. Suppose
that portfolios �̃i and �̂i are such that R�̃i = R�̂i . If (P̃, �̃−i ) is a subequilibrium
triggered by trade �̃i , then

(
P̃, (�̃ j + (I − 1)−1(�̃i − �̂i )) j �=i

)
(12)

is a subequilibrium triggered by trade �̂i .

Proof of Proposition 2 Let �i be a portfolio such that R�i = 0. By definition of equi-
librium, there exists a local inverse demand function for individual i, Pi . Define the
function ϕ(λ) = Pi (�̄i +λ�i ), for real numbers λ close enough to 0. By Lemma 4, it
follows that (P̄(�̄ j − (I − 1)−1λ�i ) j �=i ) is a subequilibrium triggered by trade λ�i ,
so it is immediate that ϕ′(λ) = 0. By construction, ϕ′(�̄i )�i = M̄i�i . �	

We restrict our attention to equilibria in which all price impact matrices give no
irrelevant impact. In the following sections we argue that such equilibria exist and are
determinate. We conjecture that equilibria in which traders have irrelevant impact do
not exist.

4 Pricing kernel in thin complete markets

4.1 Elementary securities

Since we are considering only the case of complete financial markets, we can obtain
a canonical auxiliary representation of the economy by endowing with a complete set
of elementary securities, in lieu of the set of securities R. That is, the representation
of economy {u, e, R} in elementary securities is economy {u, e, IS}. For notational
simplicity, we use lower-case characters for the corresponding (endogenous) variables
in the representation in elementary securities:

Definition 5 Given preferences and endowments {u, e}, a triple consisting of a vector
of state prices, a profile of revenue transfers across states of the world and a profile of
state-price impact matrices, ( p̄, θ̄ , m̄) is an equilibrium in elementary securities for
{u, e} if it is an equilibrium in thin financial markets for economy {u, e, IS}.

The following result says that, under our assumptions, equilibria in elementary
securities exist and are (generically) locally unique.

Proposition 3 Suppose there are at least three traders in the market. Then,

1. For any profile of preferences and endowments, {u, e}, there exists an equilibrium in
elementary securities ( p̄, θ̄ , m̄) such that all price impact matrices m̄i are diagonal
and positive definite.
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2. If, moreover, all preferences are three times continuously differentiable, then, gener-
ically in the space of preferences and endowments, all equilibria in elementary
securities with diagonal, positive-definite price impact matrices are locally unique
(i.e., isolated from one another).21

Proof These results follow, respectively, from Theorems 1 and 2 in Weretka (2007a).
For the sake of simplicity and completeness, Appendix A2 specializes the proofs to
our case. �	

It is natural to ask whether in the equilibria resulting from Proposition 3 there are
arbitrage opportunities and irrelevant price impacts. Observe that in the economy with
elementary securities the only portfolio that gives zero return in all states is a zero
portfolio, and obviously both the cost of such portfolio and its price impact are zero,
regardless of the specific prices and price impact matrices. Therefore, equilibrium
prices do not allow for weak arbitrage opportunities and there is no irrelevant price
impact in the economy with elementary securities. The question of whether the no-
arbitrage condition holds in the strong sense (so that a strong pricing kernel exists) is
addressed in the next proposition.

Proposition 4 Let ( p̄, θ̄ , m̄) be an equilibrium in elementary securities for {u, e}, with
diagonal, positive definite price impact matrices m̄i . Then, prices p̄ allow no-arbitrage
opportunities: p̄ � 0

Proof For every trader i , it must be true that p̄ = ∂ui (ei + θ̄ i )−m̄i θ̄ i . For asset (state)
s, since m̄i is diagonal, the latter means that p̄s = ∂ui

s(e
i
s + θ̄ i

s ) − m̄i
s,s θ̄

i
s . By market

clearing, there must exist i for whom θ̄ i
s ≤ 0, which means, by monotonicity of ui

s
and positive definiteness of m̄i , that p̄s > 0. �	

Critically, the implication of Proposition 4 does not follow simply from the existence
of one rational trader with monotone preferences; rather, it follows from the facts that
all traders are acting optimally according to their von Neumann–Morgenstern utility
functions, which are separable, and that all markets clear.

4.2 Equivalence of the representations

We say that a pair of portfolios (�i , θ i ) ∈ RA × RS is R-associated if the two port-
folios are payoff-equivalent, R�i = θ i . By market completeness, for every θ i there
is at least one �i such that (�i , θ i ) is R-associated, for example

�i =
(

R−1
S θ i

0

)

. (13)

When there are no redundant assets, such �i is unique.

21 The sense in which this result holds for a “typical economy” is established in detail in the proof.
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Furthermore, we say that a triple of a vector of prices, a profile of portfolios and
a profile of price impact matrices in market R, and a corresponding triple in elemen-
tary securities are R-associated if so are each of their components: (P,�, M) and
(p, θ, m) are R-associated if:

1. the pair of prices (P, p) is R-associated: P = RT p;
2. for each i , the pair of portfolios (�i , θ i ) is R-associated: R�i = θ i ; and
3. for each i , the pair of price impact matrices (Mi , mi ) is R-associated:

Mi = RTmi R.

The next lemma establishes the connection between the equilibria in economies with
arbitrary assets and their counterparts with elementary securities.

Lemma 5 Suppose that (P̄, �̄, M̄) and ( p̄, θ̄ , m̄) are R-associated. Then,

1. if ( p̄, θ̄ , m̄) is an equilibrium in elementary securities for {u, e} and
∑

i �̄i = 0,
then (P̄, �̄, M̄) is an equilibrium in thin financial markets for {u, e, R};

2. if (P̄, �̄, M̄) is an equilibrium in thin financial markets for {u, e, R}, then ( p̄, θ̄ , m̄)

is an equilibrium in elementary securities for {u, e}.
Proof See Appendix A1. �	

In the following sections, we explore the theoretical and practical implications of
this result.

4.3 Equilibria with no-arbitrage

Suppose that trader i has chosen a portfolio �i , even though an arbitrage opportunity
� exists in the market. If i were competitive, portfolio �i +λ�, for any λ > 0, would
give her more utility. This need not be the case, though, when i is noncompetitve, for
her demand for portfolio �, the arbitrage opportunity, may exert ‘detrimental’ effects
of the price of � itself, and on the cost of portfolio �i ; while the first effect is of
second order, and hence vanishes for small λ, the second effect is of first order.

Proposition 4 has given a condition under which no-arbitrage remains a necessary
condition of equilibria under noncompetitive behavior, for the case of a full set of ele-
mentary securities. The following result is the most important one in the paper: it shows
that in economies with complete markets and separable preferences, noncompetitive
behavior is not incompatible with the existence of a pricing kernel.

Theorem 1 Suppose that there are at least three traders in the market. Then,

1. For any economy {u, e, R}, there exists an equilibrium (P̄, �̄, M̄) satisfying that

(a) all price impact matrices M̄i are symmetric, positive definite and give no
irrelevant price impact; and

(b) prices P̄ allow no strong (and, hence, no weak) arbitrage opportunities,
and a classical pricing kernel exists.

2. If, moreover, all individual preferences are three times continuously differentia-
ble, then, for a generic profile of preferences and endowments {u, e}, and for any
asset structure R, equilibria satisfying conditions (a) and (b) above are locally
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unique, at least up to the payoff equivalence of the portfolios: generically in {u, e},
every equilibrium (P̄, �̄, M̄) of {u, e, R} has an open neighborhood such that
if (P̃, t ilde�, M̃) is an equilibrium for the same economy and lies in that open
neighborhood, then P̃ = P̄, M̃ = M̄ and R�̃i = R�̄i for every trader i .

Proof Part 1 follows from part 1 of Proposition 3: Given preferences and endowments
{u, e}, it follows from the proposition that there exists an equilibrium in elementary
securities ( p̄, θ̄ , m̄), and that in this equilibrium all price impact matrices m̄i are diag-
onal. Define P̄ = RT p̄ and, for all trader i , let

�̄i =
(

R−1
S θ̄ i

0

)

(14)

and M̄i = RTm̄i R. By construction, (P̄, �̄, M̄) and ( p̄, θ̄ , m̄) are R-associated and∑
i �̄i = 0. It follows from part 1 of Proposition 5 that (P̄, �̄, M̄) is an equilibrium

in thin financial markets for {u, e, R}. By construction, every price impact matrix
M̄i gives no irrelevant price impact, and hence, it follows from Proposition 1 that P
allows no weak arbitrage opportunities. Moreover, since every matrix m̄i is diagonal,
it follows from part 1 of Proposition 4 that p̄ � 0, and, hence, that P̄ = RT p̄ allows
no strong arbitrage opportunities either.

For part 2, take any profile of preferences and endowments, {u, e}, in the generic set
given by part 2 of Proposition 3, and fix any R satisfying the assumptions imposed in
the paper. Suppose, by way of contradiction, that there exist an equilibrium (P̄, �̄, M̄)

and a sequence of equilibria (Pn,�n, Mn)∞n=1, all of them satisfying conditions (a)
and (b), such that

1. for every n, (Pn, (R�i
n)I

i=1, Mn) �= (P̄, (R�̄i )I
i=1, M̄); and

2. sequence (Pn,�n, Mn)∞n=1 converges to (P̄, �̄, M̄).

Define p̄ and pn to be the unique state-price vectors R-associated, respectively, to P̄
and Pn . Similarly, let m̄ and mn be the unique profiles of price impact matrices that
are R-associated, respectively, to M̄ and Mn . By part 2 of Lemma 5, it follows that
( p̄, (R�̄i )I

i=1, m̄) and all (pn, (R�i
n)I

i=1, mn) are equilibria in elementary securities
for {u, e}. Since R-association of prices and price impact matrices both define bijec-
tions, it follows from the first property above that for every n, (pn, (R�i

n)I
i=1, mn) �=

( p̄, (R�̄i )I
i=1, m̄). By the second property above, (pn, (R�i

n)I
i=1, mn) converges to

the limit ( p̄, (R�̄i )I
i=1, m̄), but this is impossible since all equilibria in elementary

securities for {u, e} are locally unique. �	

5 The fundamental theorem of asset pricing

The following result is an extension of the fundamental theorem of asset pricing. It
says the introduction of an asset whose payoff can be replicated by a combination of
existing assets need not perturb non-competitive equilibria: the new asset is priced at
the cost of the portfolio that replicates it, and it is not traded. What is new, though,
is that the same principle by which the asset is priced applies to the price impacts it
exerts and receives.
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Theorem 2 Suppose that (P,�, M) is an equilibrium in thin financial markets for
economy {u, e, R}, and that all price impact matrices Mi give no irrelevant price
impact. Let ρ be a collection of new assets, taken as an S × Ã matrix, let R̃ = (R, ρ)

be a new asset structure, and let

�ρ =
(

R−1
S ρ

0

)

(15)

be a collection of portfolios that replicate the assets in ρ.22 Then, an equilibrium for
economy {u, e, R̃} is given by (P̃, �̃, M̃) with prices

P̃ =
(

P
�T

ρ PT

)

, (16)

individual portfolios �̃i = ((�i )T, 0)T, and individual price impact matrices

M̃i =
(

Mi Mi�ρ

�T
ρ Mi �T

ρ Mi�ρ

)

. (17)

Proof By Corollary 1, there exists p ∈ RS such that RT p = P . By construc-
tion, then, p = (RT

S )−1(P1, . . . , PS)T. Define also, for each i, θ i = R�i and
mi = (RT

S )−1 Mi
S R−1

S . By Lemma 3, (P,�, M) and (p, θ, m) are R-associated, and,
in particular,

Mi = RTmi R =
(

Mi
S Mi

S R−1
S RA−S

RT
A−S(R−1

S )T Mi
S RT

A−S(R−1
S )T Mi

S R−1
S RA−S

)

. (18)

It follows from part 2 of Proposition 5 that (p, θ, m) is an equilibrium in elementary
securities for {u, e}. Also by construction, prices (P̃, p) and portfolios (�̃, θ) are
R̃-associated. Moreover, for each trader i ,

R̃Tmi R̃ =
(

Mi RTmiρ

ρTmi R ρTmiρ

)

. (19)

By direct computation,

RTmiρ =
(

Mi
S R−1

S ρ

RT
A−S(RT

S )−1 Mi
S R−1

S ρ

)

= Mi�ρ, (20)

and ρTmiρ = �T
ρ Mi�ρ , so R̃Tmi R̃ = M̃i . It follows that (M̃, m) is R̃-associated,

and the result then follows from part 1 of Proposition 5. �	

22 Notice that �ρ is an A× Ã matrix, and not just a column vector. The ath column in this matrix replicates
the ath payoff vector in ρ.
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Corollary 1 and Proposition 2 can be used to write the equilibrium prices for the
economy endowed with asset structure R̃ as

P̃ = R̃T p

(
P
ρT p

)

. (21)

for some p ∈ RS . It is in this sense that vector p obtained from corollary is a pricing
kernel: the prices of all assets, including derivatives that can be replicated from exist-
ing assets, can be expressed as the value of their returns at state prices p. Crucially,
Proposition 1 established the existence of equilibria in which p is a pricing kernel in
the classical sense (p � 0) and can be used to define a probability measure over states
of the world.

Note also that the computation of price impact matrices can be obtained via their
analogous in elementary securities as well: this is the intuition of Eq. (19). In this sense,
one can view the price impact matrices in elementary securities as “price impact ker-
nels.”

6 An example

We now use a “coconut” example to illustrate numerical differences between equi-
libria in competitive economies and equilibria in thin financial markets. We choose
the values of parameters to illustrate the mechanisms that operate in thin financial
markets. We demonstrate that such mechanisms potentially may help to explain some
of the asset pricing puzzles. Finally we show how Theorem 2 can be applied to price
derivatives in thin markets.

Consider an island where the only production technology available is coconut
palms. There are three equally likely states of the world, s = 1, 2, 3: in state 1 there
is a drought in the north of the island and the palms there are not productive; in state
2, the drought is in the south of the island; in state 3, there is no drought anywhere in
the island, and in this case each palm produces two coconuts.

There are two types of individual, t = 1, 2, and there are two (identical) indi-
viduals of each type. Type-1 individuals live in the north, so they have wealth only
when that region of the island is productive: they are endowed with e1 = (0, 2, 2).
Type-2 individuals live in the south, and, analogously, they have e2 = (2, 0, 2). All
four individuals have identical preferences,

u(c) = c0 + 1

3

∑

s

ln(cs). (22)

There are three securities that can be traded in this economy: a riskless bond,
R1 = (1, 1, 1)T, a share in a coconut palm from the south, R2 = (0, 2, 2)T, and a
share in a coconut palm from the north, R3 = (2, 0, 2)T.

6.1 Equilibrium in thin financial markets

If all traders ignore their price effects and behave competitively, the equilibrium in
these financial markets is at prices P̃ = (5/6, 1, 1)T, with both type-1 individuals
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buying a portfolio �̃1 = (0,−1/2, 1/2)T and both type-2 individuals selling that
portfolio.

6.1.1 Elementary securities

For simplicity of computation, we can solve first for an equilibrium in elementary
securities, and then use Lemma 5 to obtain one in the original thin financial markets.
By numerical computation, an equilibrium in elementary securities is as follows:23

1. prices are p̄ = (0.3920, 0.3920, 0.1667)T;
2. both type-1 individuals buy a portfolio θ̄1 = (0.6647,−0.6647, 0) and estimate a

price impact matrix

m̄1 =
⎛

⎝
0.1646 0 0

0 0.2142 0
0 0 0.0417

⎞

⎠ ; (23)

3. each type-2 individual sells the portfolio purchased by a type-1 individual,
θ̄2 = −θ̄1, and they both estimate a price impact matrix

m̄2 =
⎛

⎝
0.2142 0 0

0 0.1646 0
0 0 0.0417

⎞

⎠ . (24)

6.1.2 Equilibrium

We can now use Lemma 5 to compute the equilibrium with asset structure
R = (R1, R2, R3):

1. prices are given by

P̄ = RT p̄ = (0.9507, 1.1173, 1.1173)T; (25)

2. each individual of type 1 buys a portfolio

�̄1 = R−1θ̄1 =
⎛

⎝
0.0000

−0.3324
0.3324

⎞

⎠ , (26)

which is sold by a type-2 individual: �̄2 = −�̄1; and

23 This equilibrium can be compared with the competitive equilibrium of this economy in the case of a
full set or elementary securities: prices would be p̃ = (1/3, 1/3, 1/6)T , type-1 individuals would buy
θ̃1 = (1, −1, 0)T , which would be sold by type-2 individuals.
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3. each individual of type 1 estimates that her price impacts are

M̄1 = RTm̄1 R =
⎛

⎝
0.4205 0.5117 0.4126
0.5117 1.0233 0.1667
0.4126 0.1667 0.8252

⎞

⎠ , (27)

while each individual of type 2 estimates

M̄2 = RTm̄2 R =
⎛

⎝
0.4205 0.4126 0.5117
0.4126 0.8252 0.1667
0.5117 0.1667 1.0233

⎞

⎠ . (28)

One can readily verify that these values satisfy all the conditions of Lemma 1, and,
hence, constitute an equilibrium for {u, e, R}.

This application illustrates the use of our no-arbitrage results. As is learnt from the
literature on competitive asset pricing, the equilibrium prices of elementary securities
constitute a pricing kernel that allows us to find the equilibrium prices under other
complete financial securities. Our results show that this formulae are still applicable
under non-competitiveness, and that an analogous exercise can be applied to construct
the price impact matrices for arbitrary asset structures on the basis of those obtained
at equilibrium under elementary securities.24

6.2 Price biases

6.2.1 Risk-free interest rates

The risk-free interest rate puzzle was first observed by Weil (1989). In short, in the
competitive theory of asset pricing, the risk-averse agents prefer flat consumption over
time. They are willing to postpone consumption only if compensated by a high inter-
est rate. Given the standard preferences, the empirically observed growth rate of per
capita consumption equal to 2% cannot be reconciled with the risk-free interest rate
of only 1%.

Notice that in the economy of our example, the competitive risk-free interest rate is
r̃ = 1/P̃1 − 1 = 0.2. Importantly, notice that when these agents recognize their price
impacts the risk-free interest rate is lower: it is r̄ = 1/P̄1 − 1 = 0.0519. Importantly,
it turns out that this result is more general than just the current example. It follows
from the Fundamental Theorem of Asset Pricing that, with a pricing kernel, the return
to a riskless asset, 1 + r , can be computed as the inverse of the sum of all state prices.
Suppose now that all individuals have identical CRRA Bernoulli utility functions.25

24 Of course, while the pricing kernel applies to all the traders, each one of them will have an individual
“price impact kernel”.
25 Namely, if for all i ,

ui
s (c

i
s ) = (ci

s )
1−φs

1 − φs
, (29)
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Since the third derivative of a CRRA utility function is positive, the assumptions of
Proposition 4 in Weretka (2007a) hold. Then, state-by-state, the equilibrium price of
an elementary security is above its competitive counterpart and therefore the risk-free
interest rate is lower than in the corresponding competitive market. We formally have,
then, the following proposition.

Proposition 5 Consider an economy {U, e, R}, where all individuals have identical
CRRA Bernoulli utility functions. In any equilibrium satisfying the two properties
stated in part 1 on Theorem 1, the risk-free interest rate is always below the rate that
would arise in a competitive economy.

It follows that when financial markets are thin, using the competitive model to
explain the empirical returns will lead to a risk-free interest rate puzzle. This is true
even if the specified CRRA preferences have a “reasonable” risk-aversion parameter.

In a competitive model with identical quasilinear preferences consumption of each
agent is the same and equal to a per capita consumption. In thin markets, however trad-
ers do not perfectly hedge their idiosyncratic risk, and hence equilibrium consumption
is not degenerated. With convex marginal utility,26 in each state the same per capita
consumption is associated with a higher average marginal utility across all traders.
This enhances the price of an elementary security. Consequently the interest rate falls.

The reason why, given a low interest rate, agents do hold bonds rather than con-
sume more in period zero is that with a convex marginal utility and partial hedge of
idiosyncratic risk, an agent’s marginal value of a dollar is disproportionally high in
bad states; the riskless asset pays in all states a constant amount and therefore is an
attractive insurance instrument.

6.2.2 Equity premia

Another anomaly robustly documented in the empirical literature is the equity premium
puzzle. In our example, if trade were competitive the equity premium would be, for
asset 2,

E(R2)

P̃2
− r̃ = 0.1333. (30)

In the equilibrium in thin markets, the same return is traded at a higher premium

E(R2)

P̄2
− r̄ = 0.1414. (31)

Therefore in our example the equity premium is significantly above the one obtained
in the competitive setting. Intuitively, price impacts of the traders are the highest for

footnote 25 continued
where φs > 0 is the coefficient of risk aversion; it is well known that in the case φs = 1 one has that
ui

s (c
i
s ) = ln(ci

s ).
26 The third derivative of a CRRA utility function is positive, which implies that in each state a marginal
utility is convex.
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elementary securities corresponding to “bad” states of the economy, and for such states
the price biases are strongest.

6.3 Arbitrage pricing in practice

To the existing assets, a bond and two stocks, we add call options shares of the palms,
with strike prices equal to 1 in both cases. These assets can be written as

R4 =

⎛

⎜
⎜
⎝

max{R2
1 − 1, 0}

max{R2
2 − 1, 0}

max{R2
3 − 1, 0}

⎞

⎟
⎟
⎠ =

⎛

⎝
0
1
1

⎞

⎠ , (32)

and

R5 =

⎛

⎜
⎜
⎝

max{R3
1 − 1, 0}

max{R3
2 − 1, 0}

max{R3
3 − 1, 0}

⎞

⎟
⎟
⎠ =

⎛

⎝
1
0
1

⎞

⎠ . (33)

Let ρ = (R4, R5), and notice that these claims are reproduced by

�ρ =
⎛

⎝
0 0

1/2 0
0 1/2

⎞

⎠ . (34)

By Theorem 2, we can obtain an equilibrium where prices of the existing (primitive)
assets remain the same, all traders constitute the same portfolios as before (that is,
they do not trade the options), the options are priced at P̄�ρ = (0.5587, 0.5587), and
the price impact matrices are as follows: for each type-1 individual the matrix is

(
M̄1 M̄1�ρ

�T
ρ M̄1 �T

ρ M̄1�ρ

)

=

⎛

⎜
⎜
⎜
⎜
⎝

0.4205 0.5117 0.4126 0.2558 0.2063
0.5117 1.0233 0.1667 0.5117 0.0833
0.4126 0.1667 0.8252 0.0833 0.4126
0.2558 0.5117 0.0833 0.2558 0.0417
0.2063 0.0833 0.4126 0.0417 0.2063

⎞

⎟
⎟
⎟
⎟
⎠

, (35)

while for each type-2 individual it is

(
M̄2 M̄2�ρ

�T
ρ M̄2 �T

ρ M̄2�ρ

)

=

⎛

⎜
⎜
⎜
⎜
⎝

0.4205 0.4126 0.5117 0.2063 0.2558
0.4126 0.8252 0.1667 0.4126 0.0833
0.5117 0.1667 1.0233 0.0833 0.5117
0.2063 0.4126 0.0833 0.2063 0.0417
0.2558 0.0833 0.5117 0.0417 0.2558

⎞

⎟
⎟
⎟
⎟
⎠

. (36)
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These results are, again, applications of our extension of the fundamental theorem
of asset pricing; they illustrate how the idea of no arbitrage pricing can be extended
no our non-competitive setting.

7 Strategic market games

An alternative model of non-competitive interaction in markets is given by the con-
cept of Nash equilibrium in strategic market games, as defined by Shapley and Shubik
(1977).27 In such a setting, Koutsougeras (2003) and Koutsougeras and Papadapoulos
(2004) prove that arbitrage opportunities may exist at equilibrium prices.28 The pur-
pose of this section is to compare the definitions of equilibrium used in these two
papers with the one used here, in order to understand the reason for the difference in
their implications. We first cast our definition of equilibrium in thin markets in the
setting of a strategic market game, and later express the definition of Nash equilibrium
in such a game in the language used in the rest of the paper. For the sake of simplicity,
we do this in the context of trade in elementary securities only, which provides us with
a simpler notation.

7.1 Conjectural equilibrium in games

Before we can express the concept of equilibrium in thin markets in the language of
strategic market games, we specialize a series of definitions to the case of a suitable
class of games. Consider a set of players who are denoted by i = 1, . . . , I . For each
player i , let Ai ⊆ RK be the set of actions, and let Ui : A → R denote the preferences,
where A = ×i Ai .

Suppose that the game is subject to the following aggregation structure: let � ⊆ RS

be a set of aggregate states, let π : A → � be a smooth aggregator function, and
suppose that for every player i , preferences satisfy that Ui (α) = vi (αi ,π(α)), for
some smooth function vi : Ai × � → R. Every concept below should be taken as
relative to the aggregator π .

7.1.1 Conjectures

A conjecture for individual i is a function π i : Ai × A → �. This function is under-
stood as the individual’s belief aggregate state she can induce from a given initial
profile of actions: she believes that if the status quo is ᾱ, then she can induce state
π i (αi , ᾱ) by playing αi .

If a conjecture has the property that, for every ᾱi ∈ Ai it is true that π i (·, (ᾱi , α¬i ))

= π i (·, (ᾱi , ᾱ¬i )) whenever α¬i , ᾱ¬i ∈ A¬i are such that π(ᾱi , α¬i ) = π(ᾱi , ᾱ¬i ),
then the conjecture is said to be coarse: in this case, the individual only distinguishes
the status quo up to her own action and the aggregate state of the world. In the case of
a coarse conjecture, we may simply write π i : Ai × Ai × � → �.

27 See Giraud (2003) for a survey of this literature.
28 In the economy presented in the previous section, though, this does not occur, at least for symmetric
Nash equilibrium; we will come back to this point after the necessary notation has been introduced.
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A coarse conjecture π i is variational if there exists a function δi : Ai → RK×S

such that

π i (αi , ᾱi , p) = p +
αi∫

ᾱi

δi (a)da (37)

for every (αi , ᾱi , p). If, furthermore, function δi is constant, we say that the conjecture
is simple. In the case of a variational conjecture, it suffices that we identify function
δi , which, in turn, we can take to be simply a K × S matrix when the conjecture is
simple.

7.1.2 Conjectural equilibrium

Given a profile of actions ᾱ and a conjecture π i , define the set

Bi (ᾱ, π i ) := argmaxαi v
i (αi , π i (αi , ᾱ)). (38)

By construction, if the conjecture is coarse we can simply write this set as Bi (ᾱi , p̄, π i ),
with p̄ = π(ᾱ).

Any action ᾱi such that ᾱi ∈ Bi ((ᾱi , ᾱ¬i ), π i ) is stable for individual i , given the
actions of others and her conjecture (α¬i , π i ). A conjectural equilibrium with respect
to the profile of conjectures π is a profile of actions ᾱ such no player would want to
deviate, given her conjecture: ᾱi ∈ Bi ((ᾱi , ᾱ¬i ), π i ) for all i .

The following lemma restates the definition of Nash equilibrium in the context of
variational conjectures.29

Lemma 6 The profile of actions ᾱ is a Nash equilibrium of the game if, and only if, it
is a conjectural equilibrium with respect to the profile of variational conjectures given
by

αi �→ δi (αi ) = ∂αi π(αi , ᾱ¬i ), (39)

for all i .

Proof See Appendix A1. �	

This result simply says that, for a given Nash equilibrium, all that matters is the
player’s conjectured effect given the equilibrium actions of others.30

29 A Nash equilibrium is a conjectural equilibrium with respect to the profile of conjectures ((αi , ᾱ) �→
π(αi , ᾱ¬i ))i∈I .
30 Importantly, note that these variational conjectures are constructed for each equilibrium, so it need not
be possible to construct variational conjectures that will capture all the Nash equilibria of a game.
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7.1.3 Consistent conjectural equilibrium

For each player i , given an action αi and a profile of conjectures for players other than
i, π¬i , let �i (αi , π¬i ) be the projection into � of the set

{(p, α¬i )∈� × A¬i :π(αi , α¬i )= p and α j ∈ B j ((α1, . . . , α I ), π j ) for all j �= i}.
(40)

Set �i (αi , π¬i ) collects the aggregate states that individual i could induce by
playing action αi , if every other player acts optimally according to her conjecture.

A profile of conjectures π is perfect if for every individual i , and for every profile of
actions of her opponents, α¬i , one has that �i (αi , π¬i ) = {π i (αi , α¬i )} for all of her
actions. The profile is consistent if we simply require that π i (αi , α¬i ) ∈ �i (αi , π¬i ).

A profile of coarse conjectures π is first-order consistent at (p̄, ᾱ), where p̄ is
an aggregate state and ᾱ is a profile of actions, if for every player i there are open
neighbourhoods Oi (p̄) and Oi (ᾱi ) and a smooth function pi : Oi (ᾱi ) → Oi (p̄) such
that,

(i) �i (αi , δ¬i ) ∩ Oi (π̄) = {pi (αi )} for each ai ∈ Oi (ᾱi ); and
(ii) pi (ᾱi ) = π i (ᾱi , ᾱi , p̄) and ∂pi (ᾱi ) = ∂αi π i (ᾱi , ᾱi , p̄).

The first condition requires that the function be a local selection of states that are
induced, and the second that the conjecture be correct, at the equilibrium action and
to a first-order approximation, relative to the local selection. If the conjecture is var-
iational, the second condition simply requires that ∂pi (ᾱi ) = δi (ᾱi ). In the same
case, if we maintain the first condition but strengthen the second one to require that
∂pi (αi ) = δi (αi ) for each αi ∈ Oi (ᾱi ), we say that profile δ is locally consistent
around (p̄, ᾱ).

A first-order point-consistent equilibrium consists of a profile of actions, ᾱ, and a
profile of coarse conjectures, π̄ , such that:

(i) ᾱi ∈ Bi (ᾱi ,π(ᾱ), π̄ i ) for all i ; and
(ii) profile π̄ is first-order consistent at (π(ᾱ), ᾱ).

Here, the first condition requires that each player’s action be stable given the equi-
librium aggregate state and her conjecture, and the second condition that player’s
conjecture be correct from the point of view of its level and first derivative at the
equilibrium actions.If all conjectures are variational, and one maintains the first con-
dition but strengthens the second one to local consistency around (p̄, ᾱ), the profiles of
actions and conjectures are similar to the concept of equilibrium defined by Bresnahan
(1981).31

31 This definition of equilibrium is slightly more general than the concept introduced in Bresnahan (1981),
in the sense that we have not assumed that the aggregate states induced by players are always uniquely deter-
mined. Suppose, as he does, that �i (αi , δ¬i ) is always a singleton, interpret it as a function, and suppose
that this function is smooth; then, the definition of local consistency simply requires that ∂

αi �
i (αi , δ̄¬i ) =

δ̄i (αi ), for all αi in some open neighborhood of ᾱi , for each i .

123



www.manaraa.com

No-arbitrage in thin financial markets 247

7.2 Market games and equilibrium

Recall now the financial economy used before in the paper, which evolves over two
periods, has an uncertain state of the world, s = 1, . . . , S, in the second period, and
where in the first period investors trade assets that deliver their return in the second
period. Suppose, for the sake of notational simplicity, that the market offers the com-
plete set of elementary securities for trade, and consider the following market game.
Let

Ai := {(bi , qi ) ∈ R2S+ : qi ≤ ei and bi · qi = 0}, (41)

where bi
s denotes the amount of numèraire that individual i spends on asset s, while

qi
s is the number of units of asset s that she sells. As in the standard market game,

define the payoff functions vi : A → R by

Ui (b, q) := −
∑

s

bi
s +

∑

s

qi
s

∑J
j=1 b j

s
∑J

j=1 q j
s

+ ui

⎛

⎝

(

ei
s + bi

s

∑J
j=1 q j

s
∑J

j=1 b j
s

− qi
s

)S

s=1

⎞

⎠ ,

(42)

where we are dismissing profiles of actions for which
∑

qi
s = 0 of

∑
bi

s = 0 for
some s.32

This game can be written in the following aggregative form. Let the aggregator func-
tion π : A → RS+ be defined by π s(b, q) = (

∑
i bi

s)/(
∑

i qi
s), and let the functions

vi : Ai × RS+ → R be

vi ((bi , qi ), p) := −
∑

s

bi
s +

∑

s

qi
sps + ui

((

ei
s + bi

s

ps
− qi

s

)S

s=1

)

. (43)

Now, all the concepts of equilibrium in games presented above can be applied here,
relative to the aggregator function π .

7.2.1 Equilibrium in thin markets and market games

Given a profile m̄ of diagonal, positive definite price impact matrices, define, for each
individual and asset, the function ϕi

s : R+ × R++ × R → R by

ϕi
s(bs, ps, cs) := 1

2

(

ps + m̄i
s(e

i
s − cs) +

√
(ps + m̄i

s(e
i
s − cs))2 + 4m̄i

sbs

)

.

(44)

32 We will maintain this simplification throughout the analysis.
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Define also the following coarse conjectures: for individual i ,

π̄ i
s ((b

i , qi ), (b̄i , q̄i ), p̄)

:=
{

p̄s − m̄i
s(q

i
s − q̄i

s), if q̄i
s > 0 and bi

s = 0;
ϕi

s(bs, p̄s, ei
s + b̄i

s
p̄s

− q̄i
s) − mi

sqi
s , otherwise.

(45)

Henceforth, all computations assume that p̄s −m̄i
s(c̄

i
s −ei

s) > 0. Under this assump-
tion ϕi

s(0, ps, cs) > 0, whereas, by direct computation,

ϕi
s( p̄s(c̄s − ei

s), p̄s, c̄s) = p̄s (46)

and

∂ϕi
s

∂bs
( p̄s(c̄s − ei

s), p̄s, c̄s) = m̄i
s

m̄i
s(c̄

i
s − ei

s) + p̄s
. (47)

Also,33

ϕi
s(bs, p̄s, c̄s) = p̄s + m̄i

s

(
bs

ϕi
s(bs, p̄s, c̄s)

+ ei
s − c̄i

s

)

. (49)

Lemma 7 For every individual i , and every asset s, equality

π̄ i
s ((b

i , qi ), (b̄i , q̄i ), p̄) = p̄s + m̄i
s(c

i
s − c̄i

s) (50)

holds whenever q̄i
s = (c̄i

s − ei
s)−, b̄i

s = p̄s(c̄i
s − ei

s)+, qi
s = (ci

s − ei
s)− and

bi
s = π̄ i

s ((b
i , qi ), (b̄i , q̄i ), p̄)(ci

s − ei
s)+. (51)

Proof See Appendix A1. �	
The following result establishes the relation between our definition of equilibrium

in thin financial markets and equilibrium in market games.

Proposition 6 An equilibrium in thin markets is a first-order point-consistent equi-
librium in the market game. That is: let ( p̄, θ̄ , m̄) be an equilibrium in thin markets of
the financial economy, let the profile of actions for the market game be b̄i

s = p̄s (̄θ
i
s )+

and q̄i = θ̄ i−, and let the profile of coarse conjectures π̄ be defined as in Eq. 45; then,
((b̄, q̄), π̄) is a first-order point-consistent equilibrium in the market game.

The proof of this proposition will use the following lemmas.

33 To see this, simply notice that ϕi
s (bs , p̄s , c̄s ) solves, in π , the quadratic equation

π2 − (ps + m̄i
s (e

i
s − ci

s ))π − m̄i
sbs = 0. (48)
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Lemma 8 For individual i , fix a diagonal price impact matrix m̄i and let conjecture
π̄ i be defined by Eq. 45. Then,

1. if trade θ i is stable for i given (p, m̄i ) in the financial market, then the action
defined by (ps(θ

i
s )+, (θ i

s )−)S
s=1 is stable for her, given (p, π̄ i ), in the market game;

and
2. if action (bi , qi ) is stable for i given (p, π̄ i ) in the market game, then the trade

defined by (
bi

s
ps

− qi
s)

S
s=1 is stable for her, given (p, m̄i ), in the financial market.

Proof See Appendix A1. �	
Lemma 9 For a given individual i , suppose that all price impact matrices m̄¬i are
diagonal, and let the conjectures π̄¬i be defined as in Eq. 45. Then,

1. if p ∈ P i (θ i ; m̄¬i ), then

p ∈ �i ((ps(θ
i
s )+, (θ i

s )−)S
s=1, π̄

¬i ); (52)

2. if p ∈ �i ((bi , qi ), π̄¬i ), then

p ∈ P i ((ei
s + bi

s

ps
− qi

s)
S
s=1, m̄¬i ). (53)

Proof See Appendix A1. �	
Proof of Proposition 6 By Lemma 8 and Eq. 46, we only need to prove that profile
π̄ is first-order consistent at ( p̄, (b̄, q̄)). Fix any individual i . If q̄ i

s > 0, the argument
for asset s is immediate. Now consider an asset for which b̄i

s > 0. Let Pi be the local
inverse demand around θ̄ i . Since m̄i is positive definite and diagonal, in a neighbor-
hood of c̄i

s = ei
s + θ̄ i

s , function βs(ci ) := pi
s(c

i
s − ei

s)(c
i
s − ei

s) is a bijection into a
neighborhood of b̄i

s . Define pi
s(b

i
s) = Pi

s (β−1(bi
s)), over that neighborhood. That pi is

a selection of �i and is locally unique follows from Lemma 9. Now, by construction,
pi

s(b̄
i
s) = p̄s , while, by direct computation,

∂pi
s(b̄

i
s) = ∂ Pi

s (c̄i
s − ei

s)

∂βs(c̄i
s)

= m̄i
s

m̄i
s(c̄

i
s − ei

s) + p̄s
, (54)

so the result follows from Eqs. 46 and 47. �	

7.2.2 Nash equilibrium in market games and financial equilibrium

We now consider the opposite exercise: we determine what kind of conjectures the
traders would have to have in the financial markets, if they traded as in the Nash equi-
librium of the market game. To do this, define, for each individual i , given a vector of
prices p̄ and a profile of trades for all other individuals θ̄¬i , the function

Pi (·; p̄, θ̄¬i ) :
⎧
⎨

⎩
θ i ∈ RS+ : θ i �

∑

j �=i

(θ̄ j )−

⎫
⎬

⎭
→ RS (55)
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as follows: for each asset s,

Pi
s (θ i ; p̄, θ̄¬i ) := p̄s

∑
j �=i (θ̄

j
s )+

(θ i
s )− + ∑

j �=i (θ̄
j

s )−
. (56)

That is, individual i finds prices p for which there exist trades for all other individuals,
θ¬i , such that34

(i) for all j �= i and all s, ps(θ
j

s )+ = p̄s(θ̄
j

s )+;
(ii) for all j �= i and all s, (θ j

s )− = (θ̄
j

s )−; and
(iii) for all s,

∑
j �=i (θ

j
s ) = −θ i

s .

Now, say that an accounting-thin equilibrium of the financial market is a vector of
prices p̄ ∈ RS and a profile of asset trades, θ̄ ∈ RL I+ , such that

(i) trade θ̄ i solves the problem

max
θ i

−Pi (θ i , p̄, θ̄¬i ) · θ i + ui (ei + θ i ) (58)

for all i ; and
(ii)

∑
i θ i = 0.

Here, the first condition requires that all individuals consider their trades optimal, given
the effect on prices that the accounting function predicts. The next result establishes
the relation between this definition of equilibrium and the concepts of equilibrium in
market games.

Proposition 7 Accounting-thin equilibrium in markets and Nash equilibrium in the
market game are equivalent. That is:

1. if ( p̄, θ̄ ) is an accounting-thin equilibrium of the financial market, then its asso-
ciated profile of actions (b̄, q̄) is a Nash equilibrium of the market game; and

2. if (b̄, q̄) is a Nash equilibrium of the market game, then its associated pair of
prices and consumptions ( p̄, θ̄ ) is an accounting-thin equilibrium of the finan-
cial market.

Proof Let δ̄ be the profile of variational conjectures defined by

δ̄i (bi , qi ) := ∂(bi ,qi )π((bi , qi ), (b̄¬i , q̄¬i )), (59)

34 Intuitively, individual i does market clearing and finds prices subject to the condition that the nomi-
nal value of the consumption of each net buyer and the consumption of each net seller of asset s remain
unchanged: Prices Pi (θ i ; p̄, θ̄¬i ) solve the system along with trades defined as follows: for all j �= i and
all s,

θ
j

s =
⎧
⎨

⎩

θ̄
j

s , if θ
j

s ≤ 0;
p̄s θ̄

j
s

Pi
s (θ i ; p̄,θ̄¬i )

, otherwise.
(57)
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and notice that, under these conjectures,

Bi ((b̄i , q̄i ),π(b̄, q̄), δ̄i ) = argmax(bi ,qi )v
i [(bi , qi ),π((bi , qi ), (b̄¬i , q̄¬i ))], (60)

for every individual i .
Now, for the first part, by Lemma 6 it suffices to show that each (b̄i , q̄i ) is in the

set defined in (60). If this is not the case, one can find an action (bi , qi ) such that

vi ((bi , qi ),π((bi , qi ), (b̄¬i , q̄¬i )) > vi ((b̄i , q̄i ),π(b̄, q̄)). (61)

For simplicity of notation, let π̄ = π(b̄, q̄) and π = π((bi , qi ), (b̄¬i , q̄¬i )). Define
θ i by θ i

s = bi
s/πs − qi

s , and notice that, by construction,35 Pi (θ i , p̄, θ̄¬i ) = π and
Pi (θ̄ i , p̄, θ̄¬i ) = π̄ = p̄. By direct substitution, we then get that

−Pi (θ i ; p̄, θ̄¬i ) · θ i + ui (ei + θ i ) = vi ((bi , qi ), π)

> vi ((b̄i , q̄i ), π̄)

= −Pi (θ̄ i ; p̄, θ̄¬i ) · θ̄ i + ui (ei + θ̄ i ),

which is impossible.
For the second part, suppose that it is not true that θ̄ i solves the problem

max
θ i

−Pi (θ i , p̄, θ̄¬i ) · θ i + ui (ei + θ i ), (65)

and fix a θ i such that

− Pi (θ i , p̄, θ̄¬i ) · θ i + ui (ei + θ i ) > −Pi (θ̄ i , p̄, c̄¬i ) · θ̄ i + ui (ei + θ̄ i ). (66)

35 To see this, notice first that if bi
s = 0, then

Pi
s (θ i ; p̄, θ̄¬i ) =

∑
j �=i b̄ j

s

qi
s + ∑

j �=i q̄ j
s

= πs . (62)

Also, notice that if bi
s > 0, then

πs = bi
s + ∑

j �=i b̄ j
s

∑
j �=i q̄ j

s

= πsθ
i
s + p̄s

∑
j �=i (θ̄

j
s )+

∑
j �=i (θ̄

j
s )−

, (63)

which implies that

πs = p̄s
∑

j �=i (θ̄
j

s )+
∑

j �=i (θ̄
j

s )+ − θ i
s

= Pi
s (ci ; p̄, c̄¬i ). (64)

The other equality is by direct computation.
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Let p = Pi (θ i , p̄, θ̄¬i ) and recall that Pi (θ̄ i , p̄, θ̄¬i ) = p̄. Define bi
s = ps(θ

i
s )+ and

qi
s = (θ i

s )−, and notice that, again by construction,36 π((bi , qi ), (b̄¬i , q̄¬i )) = p and
π(b̄, q̄) = p̄. It follows then that

vi [(bi , qi ),π(bi , qi ), (b̄¬i , q̄¬i )] = −p · θ i + ui (ei + θ i )

> − p̄ · θ̄ i + ui (ei + θ̄ i )

= vi ((b̄i , q̄i ),π(b̄, q̄)),

again an impossibility. �	

7.3 No arbitrage, thin markets and market games

The results obtained in this paper contrast with the message given by Koutsougeras
(2003) and Koutsougeras and Papadapoulos (2004). There, an example is provided of a
non-competitive setting where arbitrage opportunities may exist at equilibrium: at the
Nash equilibrium of a strategic market game, asset prices (would) provide an arbitrage
opportunity.37 The analysis above explains the conceptual differences between the two
concepts of equilibrium, and therefore the quantitative differences in their predictions,
but does not clarify a key distinction. Note that in a market game, a deviation of an
agent in a given market only affects that market’s price. At a Nash equilibrium (i.e. in
the accounting-thin equilibrium above), individuals thus have diagonal price impact
matrices, whatever the asset structure of the economy. In our concept of equilibrium,
traders would have diagonal matrices when the only traded assets are the full set of

36 To see this, notice that if θ i
s ≤ 0, then

π s ((b
i , qi ), (b̄¬i , q̄¬i )) =

∑
j �=i p̄s (θ̄

i
s )+

∑
j �=i (θ̄

i
s )− − θ i

s
= ps , (67)

while if θ i
s > 0 one has that

ps =
∑

j �=i b j
s

− bi
s

ps
+ ∑

j �=i q j
s

, (68)

which implies that

ps = bi
s + ∑

j �=i b j
s

∑
j �=i q j

s

= π s ((b
i , qi ), (b̄¬i , q̄¬i )). (69)

The other inequality is immediate.
37 The example below does not give us this result. To see this, suppose that the economy is endowed with
the complete set of elementary securities. Then, at the only symmetric Nash equilibrium there is no trade
of the security for state 3, while the first two are traded at an equilibrium price of 5/12. On the other hand,
if the traded assets are as in the example of the previous section, the risk free asset is not traded while the
other two securities are traded at a price of 1.43. None of these results exhibits an arbitrage opportunity,
even if we compare them: the implicit price for state 3 is (1.43 − 2(5/6))/2 > 0.
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elementary securities, but not for general asset structures (see part 1 of Lemma 5). This
means that, in general, the price impacts implicit in the Nash equilibria of a market
game do give irrelevant impact, while we have shown the existence of equilibria in
thin markets under the requirements that all price impact matrices give no irrelevant
impact. We conjecture, but leave for future research, that all models of non-competitive
trading where the implicit price impact matrices give no irrelevant impact rule out,
at least, weak arbitrage opportunities, so that our concept of equilibrium lies in this
class, but the concept of Nash equilibrium in market games does not.

8 Concluding remarks

We have studied a model of trade in financial markets where individual investors rec-
ognize the fact that prices do depend on their trades. In this setting, the argument why
asset prices do not allow for arbitrage opportunities at equilibrium fails. In the custom-
ary argument, arbitrage opportunities cannot exist because if they do, the portfolios that
individuals are demanding cannot be optimal: whatever her preferences and beliefs38

adding one unit of the arbitrage opportunity to the portfolio of one trader would
make her strictly better-off. Thus, according to this argument, equilibrium asset prices
eliminate arbitrage opportunities and embed, in consequence, an objective probability
distribution that allows for the pricing of any state-contingent claim in the economy to
be computed as the discounted expected return it entails. But, indeed, this argument is
untenable if individual investors do anticipate that their trades will affect asset prices:
even if an arbitrage opportunity exists, it may be that an investor’s attempt to exploit
it affects the prices in a way such that the cost of her existing portfolio increases to
the point that she is no longer better-off in ex-ante terms. If a theory of asset pricing
based on an objective probability embedded in prices is going to be consistent with
noncompetitive behavior of investors, a new argument has to be provided.

In this paper, we have tackled that question in the context of a two-period, financial
economy with a finite number of states of the world. We have considered a situation
in which all traders know that, given a status quo of prices and trades in the market,
if they were to attempt a different trade, they would (have to) affect prices in order
to guarantee that the rest of the market is willing to accommodate their increased
demands or sales. In such a case, the predictions of models where all traders follow
price-taking behavior are inapplicable. For instance, each individual’s willingness to
trade is lower than in the competitive case, and, consequently, not all gains to trade
are exhausted and trade leads to an equilibrium in which the asset allocation is Pareto-
inefficient.39 Here, we have shown that, even in noncompetitive financial markets,
financial equilibria that preclude arbitrage opportunities do exist.

Some assumptions were made. First, we only consider agents with preferences that
have von Neumann–Morgenstern representation with respect to future consumption,

38 Assuming, of course, monotonicity of ex-ante preferences on consumption in all future states of the
world.
39 As long as a priori, there are some gains to trade, i.e. the initial endowments are Pareto inefficient.
The deadweight loss due to non-competitive trading depends negatively on the depth of the market, and it
vanishes completely as a number of traders approaches infinity (see Weretka 2007a).
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and that are quasilinear with respect to date-zero consumption, a variable in which we
impose no non-negativity constraints; effectively, these assumptions leave all future
consumption free of income effects, and simplifies substitution effects across con-
sumption in different states of the world, which makes our mathematical problem
more tractable. Secondly, we consider only the case in which the existing financial
markets allow for complete insurance opportunities against risk; this allows us to
obtain an auxiliary representation of the economy by replacing the financial markets
with a complete set of elementary securities, in which, thanks to the separability of
preferences, we can restrict attention to the case when price cross-effects are null: each
agent beliefs, a posteriori correctly, that if she expands her order for some security,
only the price of that security will be affected.

We then invoke the argument of Weretka (2007a) to prove the existence of equi-
libria in the auxiliary economy in which no arbitrage opportunities can exist. This
conclusion, though, follows as a consequence of the facts that all traders are individ-
ually rational and all markets are clearing, which contrasts with the competitive case,
in which the existence of just one individually rational trader suffices, regardless of
market clearing. We then associate the equilibria of the auxiliary economy with equi-
libria on the original financial structure, and obtain that at these equilibria no arbitrage
opportunities can exist either. Furthermore, we provide an extension of the fundamen-
tal theorem of asset pricing to (two-period, finite) noncompetitive economies, which
allow not only for the computation of the prices of redundant securities, but also for
the direct determination of the price impacts exerted by these securities (and also of
those exerted by other securities on these). The effect of market thinness on asset
prices is not clear without further assumptions. If one assumes a symmetric economy
with CRRA preferences, state prices are above the ones that would prevail were the
markets competitive.40

Critically, in our analysis market power is determined endogenously, as part of the
definition of equilibrium. Here, we have considered the case in which traders cor-
rectly estimate their price impacts to a first-order level of accuracy: implicit in their
individual portfolio problems, they impute a correct linear approximation to the real
inverse demand they face from the rest of the market (which, in itself, depends on the
estimations other traders are making of the inverse demand they face, estimations that
depend themselves on the one made by the trader in question). This assumption simpli-
fies the definition and treatment of equilibrium, in that it guarantees that each trader’s
solution to her portfolio problem is characterized by its first-order conditions, but is
of no further importance. Moreover, Weretka (2007b) provides strategic foundations
for the equilibrium used here.

The relaxation of the assumptions made here and verification of the validity of
non-competitive mechanisms in generating the asset pricing puzzles remain topics for
further research. If one guarantees that the second-order conditions of the portfolio
problem are satisfied for each trader, then the assumption that they only estimate their
inverse demands to a first-order level of accuracy can be removed. The assumptions
of separability and quasilinearity are useful, but ought to be relaxed.

40 For the detailed study of model predictions for different market structures and utility functions, see
Weretka (2007a).
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Appendix A1: Lemmata

Proof of Lemma 1 For necessity, the first two conditions are immediate, and we only
need to concentrate on the third condition.

For any investor j , since � j is stable given (P̄, M̄ j ) it must be that it solves the
equation P̄ = RT∂u j (e j + R�̄ j ) − M̄ j �̄ j . By strong concavity of preferences, non-
redundancy of assets and positive definiteness of the price impact matrix, this defines,
locally around P̄ , a differentiable individual (stable) demand function � j (P; M̄ j ),
with derivative

∂P� j (P̄; M̄ j ) = (RT∂2u j (e j + R�̄ j )R − M̄ j )−1, (70)

a negative definite matrix.
Thus, the demand trader i faces from the rest of the market is, locally around

P̄, ϕi (P) = ∑
j �=i � j (P; M̄ j ). By construction,

∂ϕi (P̄) =
∑

j �=i

(RT∂2u j (e j + R�̄ j )R − M̄ j )−1, (71)

again a negative definite matrix. A subequilibrium triggered by a local deviation �̃i

(close enough to �̄i ) requires prices P̃ such that ϕi (P̃) = −�̃i . This defines, locally,
a differentiable subequilibrium price function φi (�̃i ), with the property that

∂φi (�̄i ) = −(∂ϕi (P̄))−1 = 1

I − 1
H((M̄ j − RT∂2u j (e j + R�̄ j )R) j �=i ). (72)

Now, since M̄ is mutually consistent given (P̄, �̄), there exists a local inverse
demand function Pi . Since subequilibria are locally unique, it must be that, in a
neighborhood of �̄i , φi (�̃i ) = Pi (�̃i ), which immediately implies, again by mutual
consistency of M , that

Mi = ∂ Pi (�̄i ) = ∂φi (�̄i ) = 1

I − 1
H((M j − RT∂2u j (e j + R�̄ j )R) j �=i ).

(73)

For sufficiency, market clearing and stability of all trades are immediate, and we
only need to prove mutual consistency of profile M̄ .

As in the proof of necessity, by the second condition of the lemma, for each
trader i we again have, locally around P̄ , an inverse demand function ϕi (P) =∑

j �=i � j (P; M̄ j ), with

∂ϕi (P̄) =
∑

j �=i

(RT∂2u j (e j + R�̄ j )R − M̄ j )−1 (74)

a negative definite matrix. By the implicit function theorem we can find neighborhoods
N i (�̄i ) and N i (P̄), and a diffeomorphism ρi : N i (�̄i ) → N i (P̄), such that
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(a) Pi (�̃i ) is the only P in N i (P̄) satisfying that ϕi (P) + �̃i = 0; and
(b) ∂ Pi (�̄i ) = −(

∑
j �=i (RT∂2u j (e j + R�̄ j )R − M̄ j )−1)−1.

By property (a), for every �̃i ∈ N (�̄i ),P i (�̃i ; M−i ) ∩ N (P̄) = {Pi (θ̃ i )}, while, by
property (b) and the third condition of the lemma, ∂ Pi (�̄i ) = Mi . �	
Proof of Lemma 2 That prices in the set allow no weak arbitrage opportunities is
straightforward. Now, vector P allows no weak arbitrage opportunities if, and only if,
there exists no � for which P · � < 0 and R� = 0. It follows from Farkas’s Lemma
that if P allows no weak arbitrage opportunities, then for some (p0, p1) ∈ R++ ×RS ,
it is true that p0 P = RT p1. Letting p = 1

p0
p1 completes the proof. �	

Proof of Lemma 3 Write

M =
(

MS �

�T �

)

. (75)

Define

T =
(−R−1

S RA−S

IA−S

)

, (76)

and notice that RT = 0. Since M gives no irrelevant impact, it follows that MT = 0,
which implies that MS R−1

S RA−S = � and �T R−1
S RA−S = �.

Now, by direct computation,

RTm R =
(

MS RT
S m RA−S

RT
A−Sm RS RT

A−Sm RA−S

)

, (77)

whereas RTm RT = 0, so MS R−1
S RA−S = RT

S m RA−S . It follows that RT
S m RA−S =

�, which implies that RT
A−Sm RA−S = �T R−1

S RA−S = �, and hence that RTm R =
M .

For uniqueness, suppose that RTm̃ R = M . Then,

m̃ = (RT
S )−1 RT

S m̃ RS(RS)
−1 = (RT

S )−1 MS(RS)−1 = m. (78)

�	
Proof of Lemma 4 By construction,

∑

j �=i

(�̃ j + (I − 1)−1(�̃i − �̂i )) + �̂i =
∑

j �=i

�̃ j + �̃i − �̂i + �̂i = 0, (79)

and hence all markets clear. It only remains to show that for each j �= i , trade �̃ j +
(I − 1)−1(�̃i − �̂i ) is stable for j given (P̃, M̄ j ). Suppose not: for some j and some
� j ,

123



www.manaraa.com

No-arbitrage in thin financial markets 257

−(P̃ + M̄ j (� j − (�̃ j + (I − 1)−1(�̃i − �̂i )))) · � j + u j (e j + R� j )

> −P̃ · (�̃ j + (I − 1)−1(�̃i − �̂i )) + u j (e j + R(�̃ j + (I − 1)−1(�̃i − �̂i ))).

Since R(�̃i − �̂i ) = 0 and M̄ j gives no irrelevant price impact, it follows that
M̄ j (�̃i − �̂i ) = 0 and, by Proposition 1, P̃ · (�̃i − �̂i ) = 0. Then, the previous
equation is equivalent to

− (P̃ + M̄ j (� j − �̃ j )) · � j + u j (e j + R� j ) > −P̃ · �̃ j + u j (e j + R�̃ j ),

(80)

which means that �̃ j is not stable for j given (P̃, M̄ j ), contradicting the fact that
(P̃, �̃−i ) is a subequilibrium triggered by trade �̃i . �	

Proof of Lemma 5 For clarity, we denote by S i (�i ; M−i , R) and P i (�i ; M−i , R)

the sets of subequilibria triggered by �i , given M−i , and its projection into the space
of prices, when the economy is endowed with asset structure R. We distinguish these
sets for the case of elementary securities, by denoting them as S i (�i ; M−i , IS) and
P i (�i ; M−i , IS).

Notice first that, since each (M̄i , m̄i ) is R-associated, it is immediate that all M̄i

give no irrelevant price impacts. Also, notice that, by Lemma 3, m̄i = (R−1
S )T M̄i

S R−1
S

for all i .
For the first claim, suppose that ( p̄, θ̄ , m̄) is an equilibrium for {u, e, IS} and∑
i �̄i = 0. Market clearing is assumed, so we only need to show that each �̄i is

stable for i given (P̄, M̄i ), and that the profile M̄ is mutually consistent.
Suppose that �̄i is not stable for i given (P̄, M̄i ). Then, we can fix � such that

− (P̄ + M̄i (� − �̄i )) · � + ui (ei + R�) > −P̄ · �̄i + ui (ei + R�̄i ). (81)

Given that (P̄, �̄, M̄) and ( p̄, θ̄ , m̄) are R-associated, it follows that

−(RT p̄ + RTm̄i R(� − �̄i )) · � + ui (ei + R�) >

−(RT p̄) · �̄i + ui (ei + R�̄i ), (82)

so, letting θ = R�, by direct computation,

− ( p̄ + m̄i (θ − θ̄ i )) · θ + ui (ei + θ) > − p̄ · θ̄ i + ui (ei + θ̄ i ), (83)

contradicting the fact that, in the economy with elementary securities, θ̄ i is stable for
i given ( p̄, m̄i ).

Now, for each i , by mutual consistency of profile m̄, there exist neighborhoods
N i (θ̄ i ) and N i ( p̄) and a differentiable, local inverse demand function pi : N i (θ̄ i ) →
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N i ( p̄) such that pi (θ̄ i ) = p̄ and ∂pi (θ̄ i ) = m̄i . Then, we can define open neighbor-
hoods

N i (�̄i ) = {�|R� ∈ N i (θ̄ i )} (84)

and

N i (P̄) = {P|(RT
S )−1(P1, . . . , PS)T ∈ N i ( p̄)}. (85)

By construction, f (�) = R� maps N i (�̄i ) into N i (θ̄ i ), and g(p) = RT p maps
N i ( p̄) into N i (P̄), so we can define Pi = g ◦ pi ◦ f : N i (�̄i ) → N i (P̄). First,
notice that Pi (�̄i ) = RT pi (R�̄i ) = RT p̄ = P̄ , while

∂ Pi (�̄i ) = RT∂pi (θ̄ i )R = RTm̄i R = M̄i . (86)

We now want to show that for any � ∈ N i (�̄i ), Pi (�) is the unique (locally)
subequilibrium price triggered by �i = �, namely that P i (�; M̄i , R) ∩ N i (P̄) =
{Pi (�)}. First, notice that in the economy with elementary securities, for some
θ−i , (pi (R�), θ−i ) ∈ S i (R�; m̄−i , IS). Defining

� j =
(

R−1
S (θ j + 1

I−1 R�)

0

)

− 1

I − 1
�, (87)

for each j �= i , it follows that (Pi (�), (� j ) j �=i ) ∈ S i (�; M̄i , R), and hence
that Pi (�) ∈ P i (�i ; M̄−i , R). Now, suppose that there exists another P ∈
P i (�; M̄−i , R) ∩ N i (P̄). Then, for some �̃−i , (P, �̃−i ) ∈ S i (�; M̄−i , R). Since
each M̄ j gives no irrelevant price impact, it follows from Proposition 1 that P allows
no weak arbitrage opportunities, and then, from Lemma 2, that there exists p ∈ RS

such that RT p = P . By construction, p = (RT
S )−1(P1, . . . , PS)T ∈ N i ( p̄) and

((RT
S )−1 P, (R�̃ j ) j �=i ) ∈ S i (R�; m̄−i , IS). (88)

Also by construction, p �= pi (R�) and p ∈ N i ( p̄) ∩ P i (R�; m̄−i , IS), which is
impossible. It follows that for each i, Pi : N i (�̄i ) → N i (P̄) is a (differentiable)
local inverse demand: for all � ∈ N i (�̄i ),

P i (�; M̄−i , R) ∩ N i (P̄) = {Pi (�)}; (89)

since ∂ Pi (�̄i ) = M̄i , it follows that M̄ is mutually consistent.
For the second claim, suppose that (P̄, �̄, M̄) is an equilibrium for {u, e, R}. Mar-

ket clearing is immediate:
∑

i θ̄ i = ∑
i R�̄i = R

∑
i �̄i = 0. As before, we now

show that each θ̄ i is stable for i given ( p̄, m̄i ), and that m̄ is mutually consistent.
Suppose that θ̄ i is not stable for i given ( p̄, m̄i ). Then, we can fix θ such that

− ( p̄ + m̄i (θ − θ̄ i )) · θ + ui (ei + θ) > − p̄ · θ̄ i + ui (ei + θ̄ i ). (90)
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Fix any � such that R� = θ . Given that (P̄, �̄, M̄) and ( p̄, θ̄ , m̄) are R-associated,
it follows by direct computation that

− (P̄ + M̄i (� − �̄i )) · � + ui (ei + R�) > −P̄ · �̄i + ui (ei + R�̄i ). (91)

contradicting the fact that, in the economy with market R, �̄i is stable for i given
(P̄, M̄i ).

Now, for each i , by mutual consistency of profile M̄ , there exist neighborhoods
N i (�̄i ) and N i (P̄) and a differentiable local subequilibrium price function Pi :
N i (�̄i ) → N i (P̄) such that Pi (�̄i ) = P̄ and ∂ Pi (�̄i ) = M̄i . Then, we can define
open neighborhoods

N i (θ̄ i ) =
{

θ |
(

R−1
S (θ − θ̄ i )

0

)

+ �̄i ∈ N i (�̄i )

}

(92)

and

N i ( p̄) = {p|RT p ∈ N i (P̄)}. (93)

By construction

F(θ) =
(

R−1
S (θ − θ̄ i )

0

)

+ �̄i (94)

maps N i (θ̄ i ) into N i (�̄i ), and G(P) = (RT
S )−1(P1, . . . , PS)T maps N i (P̄) into

N i ( p̄), so we can define pi = G ◦ Pi ◦ F : N i (θ̄ i ) → N i ( p̄). Notice that pi (θ̄ i ) =
(RT

S )−1 Pi (�̄i ) = p̄, while

∂pi (θ̄ i ) = (
(R−1

S )T 0
)
∂ Pi (�̄i )

(
R−1

S
0

)

= (R−1
S )T M̄i

S R−1
S = m̄i . (95)

It only remains to show that for any θ ∈ N i (θ̄ i ),P i (�; M̄i , IS) ∩ N i ( p̄) =
{pi (θ)}. Let � = F(θ). Notice that in the economy with market R, for some
�−i , (Pi (�),�−i ) ∈ S i (�; M̄−i , R). Defining, for each j �= i, θ j = R� j , it fol-
lows that (pi (θ), (θ j ) j �=i ) ∈ S i (θ; m̄i , IS), and hence that pi (θ) ∈ P i (θ; m̄i , IS).
Now, suppose that there exists another p ∈ P i (θ; m̄i , IS) ∩ N i ( p̄). Then, for
some θ̃−i , (p, θ̃−i ) ∈ S i (θ; m̄i , IS). By construction, P = RT p ∈ N i (P̄) and
(RT p, (R−1

S θ̃ j , 0) j �=i ) ∈ S i ((R−1
S θ, 0); M̄−i , R). By Lemma 4,

P i
((

(RS)−1θ

0

)

; M̄−i , R

)

= P i (�; M̄−i , R), (96)

so RT p ∈ P i (�; M̄−i , R). As before, by construction, P �= Pi (�) and P ∈ N i (P̄)∩
P i (�; M̄−i , R), which is impossible. �	
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Proof of Lemma 6 For each individual, the conjecture defined by Eq. 39 is coarse and
implies that

π i (αi , ᾱi ,π(ᾱ)) = π(αi , ᾱ¬i ) (97)

for every action αi .
For necessity, we need to show that ᾱi ∈ Bi (ᾱi ,π(ᾱ), δi ). If this is not the case,

then one can find αi such that

vi (αi , π i (αi , ᾱi ,π(ᾱ)) > vi (ᾱi , π i (ᾱi , ᾱi ,π(ᾱ)). (98)

By Eq. 97, this means that vi (αi ,π(αi , ᾱ¬i )) > vi (ᾱi ,π(ᾱi , ᾱ¬i )), and, hence, that
ᾱi is not stable for i , given ᾱ¬i and the conjecture (αi , ᾱ) �→ π(αi , ᾱ¬i ), which is
impossible.

For sufficiency, we need to show that each ᾱi is stable for i , given ᾱ¬i and the
conjecture (αi , ᾱ) �→ π(αi , ᾱ¬i ). Again, if this is not true, we can fix αi such that
vi (αi ,π(αi , ᾱ¬i )) > vi (ᾱi ,π(ᾱi , ᾱ¬i )), and, thus, that

vi (αi , π i (αi , ᾱi ,π(ᾱ)) > vi (ᾱi , π i (ᾱi , ᾱi ,π(ᾱ)), (99)

by Eq. 97. As before, this is a contradiction, since ᾱi ∈ Bi (ᾱi ,π(ᾱ), δi ). �	
Proof of Lemma 7 If q̄i

s > 0 and bi
s = 0, the result is immediate. Now, in any other

case,

π̄ i
s ((b

i , qi ), (b̄i , q̄i ), p̄) = ϕi
s(bs, p̄s, ei

s + b̄i
s

p̄s
− q̄i

s) − mi
sqi

s , (100)

and the result follows from Eq. 49. �	
Proof of Lemma 8 For the first part, suppose that, contrary to the statement, there
exists an action (b̂i , q̂i ) such that

vi ((b̂i , q̂i ), ŝ) > vi ((b̂i , q̂i ), p) (101)

where p̂ = π̄ i ((b̂i , q̂i ), (bi , qi ), p).41 Let consumption ĉi
s := ei

s + b̂i
s/ p̂s − q̂i

s , for
each state s, and notice that, from Lemma 7, p̂ = p + m̄i (ĉi − ci ), so

−(p + m̄i (ĉi − ci )) · (ĉi − ei ) + ui (ĉi ) = vi ((b̂i , q̂i ), ŝ)

> vi ((b̂i , q̂i ), p)

= −p · (ci − ei ) + ui (ci ),

which is impossible.

41 Here, we are using the fact that π̄ i ((bi , qi ), (bi , qi ), p) = p.
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For the second part, suppose that there exists a trade θ̂ i such that

− p̂ · θ̂ i + ui (ei + θ̂ i ) > −p · θ i + ui (ei + θ i ), (102)

where p̂ = p + m̄i (θ̂ i − θ i ). If this is the case, define action ( p̂s(t̂hetai
s)+, (θ̂ i

s )−)S
s=1

and notice that, again from Lemma 7, p̂ = π̄ i
s ((b̂

i , q̂i ), (bi , qi ), p). Then,

vi ((b̂i , q̂i ), π̄ i
s ((b̂

i , q̂i ), (bi , qi ), p)) = − p̂ · θ̂ i + ui (ei + θ̂ i )

> −p · θ i + ui (ei + θ i )

= vi ((b̂i , q̂i ), p),

which is impossible. �	
Proof of Lemma 9 For the first part, fix, for each j �= i, θ j stable for j given (p, m̄ j ),
such that θ i + ∑

j �=i θ j = 0. Define (b, q) be the profile of actions associated to

(θ1, . . . , θ I ) at prices p. By the first part of Lemma 8, each (b j , q j ) is stable, for
j �= i , given (p, π̄ j ). By construction, π(b, q) = p, so p ∈ �i ((bi , qi ), π̄¬i ).

The proof of the second part is similar, using part 2 of Lemma 8. �	

Appendix A2: Existence and determinacy of equilibrium
in elementary securities

A2.1 Existence

We now specialize the proof of Theorem 1 in Weretka (2007a), for the particular case
treated here. All the arguments in this appendix are given for an economy with ele-
mentary securities, {u, e, IS} satisfying our assumptions about preferences and endow-
ments. Since we will only consider positive definite and diagonal price impact matrices,
we identify these matrices with vectors in RS++.

Let h : (RS+, RS++)I−1 → RS++ be the (component-wise) harmonic mean, divided
by (I − 1); that is,

hs(m, v) =
⎛

⎝
∑

j

(m j
s + v

j
s )−1

⎞

⎠

−1

. (103)

Function h is continuous, and it is well known that

(I − 1)hs(m, v) ≤ (I − 1)−1
∑

j

(m j
s + v

j
s ), (104)

for all m, all v and all s.

Lemma 10 Let γu be any strictly positive number, and let (m, v) ∈ (RS+, RS++)I−1.

Suppose that for some s, m j
s ≤ (I − 2)−1γu and v

j
s ≤ γu for all j . Then, hs(m, v) ≤

(I − 2)−1γu.
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Proof This is immediate, since

(I − 1)hs(m, v) ≤
∑

j m j
s

I − 1
+

∑
j v

j
s

I − 1
≤ γu

I − 2
+ γu . (105)

�	
Define, for each state s, μs = maxi {∂ui

s(e
i
s)}, a strictly positive real number. By

the Inada conditions, we can fix, for each trader i and state s, a revenue transfer θ̂ i
s

such that ∂ui
s(e

i
s + θ̂ i

s ) = μs . By concavity and Inada, −ei
s < θ̂ i

s ≤ 0.
Construct the (truncation) set of trades

T = {θ ∈ (RS)I :
∑

i

θ i
s = 0 and θ i

s ≥ 1

2
(θ̂ i

s − ei
s) for all i and all s}, (106)

which is nonempty, convex and compact.
Define the function V : T → (RS++)I , componentwise, by letting V i

s (θ) =
−∂2ui

s(e
i
s + θ i

s ).
42 Since T is compact, V is continuous and I and S are finite,

we can further define real numbers γu = maxθ∈T maxi,s V i
s (θ) and γd =

minθ∈T mini,s V i
s (θ); these numbers, by construction, satisfy that 0 < γd ≤ γu .

Define the function U : ([0, (I − 2)−1γu]S)I → (RS)I by

U(m) = arg max
θ∈T

∑

i,s

(

ui
s(e

i
s + θ i

s ) − 1

2
mi

s(θ
i
s )

2
)

, (107)

which is well defined since T is compact and convex, each ui is continuous and
strongly concave, and each mi

s ≥ 0. Define also the function H : ([γd , γu]S)I ×
([0, (I − 2)−1γu]S)I → (RS)I , by letting Hi (m, v) = h(m−i , v−i ).

Finally, define the function F : T ×([γd , γu]S)I , ([0, (I −2)−1γu]S)I → (RS)I ×
(RS)I × (RS)I , by

F(θ, v, m) =
⎛

⎝
U(m)

V (θ)

H(m, v)

⎞

⎠ . (108)

Lemma 11 There exists (θ̄ , v̄, m̄) ∈ T × ([γd , γu]S)I × ([0, (I − 2)−1γu]S)I such
that F(θ̄ , v̄, m̄) = (θ̄ , v̄, m̄).

Proof By construction, U maps into T , and V into ([γd , γu]S)I . By Lemma 10, H
maps into ([0, (I − 2)−1γu]S)I . It follows that F maps a convex and compact set
continuously into itself, so it has a fixed point. �	

Let a fixed point, (θ̄ , v̄, m̄), of F be fixed.

42 This function is well defined, since, by construction, (θ̂ i
s − ei

s )/2 > −ei
s , so ei

s + θ i
s > 0.
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Lemma 12 For all i and all s, it is true that θ̄ i
s > 1

2 (θ̂ i
s − ei

s).

Proof Suppose not: suppose that for some i and some s, θ̄ i
s = 1

2 (θ̂ i
s − ei

s). Since

θ̂ i
s ≤ 0, it follows that θ̄ i

s < 0, which implies that, for some j �= i, θ̄ j
s > 0. By the

definition of function U , it follows, then, that

∂ui
s(e

i
s + θ̄ i

s ) − m̄i
s θ̄

i
s ≤ ∂u j

s (e
j
s + θ̄

j
s ) − m̄ j

s θ̄
j

s , (109)

which is impossible, since

∂ui
s(e

i
s + θ̄ i

s ) − m̄i
s θ̄

i
s = ∂ui

s

(
1

2
(ei

s + θ̂ i
s )

)

− m̄i
s θ̄

i
s > μs, (110)

whereas

∂u j
s (e

j
s + θ̄

j
s ) − m̄ j

s θ̄
j

s < ∂u j
s (e

j
s ) ≤ μs . (111)

�	
We can now conclude that given preferences and endowments {u, e}, there exists an

equilibrium in elementary securities ( p̄, θ̄ , m̄) satisfying that all price impact matrices
are diagonal.

To see this, notice that, given concavity of all preferences and since m̄i
s ≥ 0 for all

i and all s, it follows from Lemma 12 that θ̄ actually solves program

max
θ :∑i θ i =0

∑

i,s

(

ui
s(e

i
s + θ i

s ) − 1

2
m̄i

s(θ
i
s )

2
)

. (112)

The first-order conditions of this problem immediately imply that there exist Lagrange
multiplies p̄ ∈ RS such that, for all i and all s,

∂ui
s(e

i
s + θ̄ i

s ) − m̄i
s θ̄

i
s = p̄s . (113)

Identifying m̄i and v̄i with the diagonal, positive definite matrices

⎛

⎜
⎝

m̄i
1 · · · 0
...

. . .
...

0 · · · m̄i
S

⎞

⎟
⎠ and

⎛

⎜
⎝

v̄i
1 · · · 0

...
. . .

...

0 · · · v̄i
S

⎞

⎟
⎠ , (114)

respectively, we get that: (i)
∑

i θ̄ i = 0; (ii) for each trader i, ∂ui (ei + θ̄ i )−m̄i θ̄ i = p̄;
(iii) for each trader i, m̄i = (I − 1)−1H(m̄−i + v̄−i ); and (iv) for each trader i, v̄i =
−∂2ui (ei + θ̄ i ).

Then, it is immediate from Lemma 1 that ( p̄, θ̄ , m̄) is an equilibrium.
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A2.2 Generic determinacy

Assume now that, moreover, each Bernoulli function ui
s is of class C3 and satisfies

that ∂2ui
s is bounded strictly below zero.

Denote by U the class of Bernoulli functions that satisfy all the assumptions we
have imposed,43 and endow this set with the topology of C3 uniform convergence on
compacta.44 The space of economies we now consider is the set (RS++)I × (US)I ,
endowed with the product topology.

We want to show that, in a dense subset of these economies, all equilibria in ele-
mentary securities are locally unique. To do this, fix an economy {ū, ē} and an open
neighborhood O of that economy. We need to show that for at least one economy
{u, e} in O the property of local uniqueness holds true.

A2.2.1 A finite-dimensional subspace of economies

As the space of economies is an infinite-dimensional manifold, it is convenient to do
our analysis in a finite-dimensional, local subspace of economies. The strategy is to
show that in this subspace we can find the economy {u, e}, where local uniqueness
holds, arbitrarily close to {ū, ē}. In this section, we define the subspace of economies.

Fix ε > 0, and a C∞ function ρ : R++ → R+ such that

ρ(x) =
{

1, if x < maxs{∑i ēi
s} + Iε + 1;

0, if x ≥ maxs{∑i ēi
s} + Iε + 2.

(115)

Also, define for each i and s the “perturbed Bernoulli” function ui
s : R++×R → R by

ui
s(xi

s, δ
i
s) = ūi

s(xi
s) + 1

2
ρ(xi

s)δ
i
s(xi

s)
2. (116)

Since each maxs{∑i ēi
s} is finite, there exists δ̄ > 0 such that for all −δ̄ < δi

s < δ̄,
function ui

s(·, δi
s) ∈ U.

Now, we consider the finite dimensional subset of economies defined by endow-
ments e ∈ Bε(ē), and preferences given, for each i and s, by ui

s(·, δi
s) for some

δi
s ∈ Bδ̄(0). This is a submanifold parameterized by Bε(ē) × Bδ̄(0)SI . For notational

simplicity, we identify the vector δi = (δi
s)s with the diagonal matrix diag(δi

s), and
denote δ = (δi )I

i=1. Similarly, we again identify the vector mi = (mi
s)s with the

diagonal matrix diag(mi
s).

43 Namely, that each ui
s is differentiably strictly monotonic and differentiably strictly concave, and satisfies

Inada conditions. Unlike in Proposition 5, we do not require now that these functions be CRRA.
44 See, for instance, Aliprantis and Border (1999).
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A2.2.2 Transversality

Now, consider the function G : RS × (RS)I × (RS++)I × Bε(ē) × Bδ̄(0) → (RS)I ×
RS × (RS)I , defined by

G(p, θ, m, e, δ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

...

p + miθ i − ∂x ui (ei + θ i , δi )
...∑
i θ i

...

(mi
s
∑

j �=i (m
j
s − ∂2

x,x u j
s (e

j
s + θ

j
s , δ

j
s )−1) − 1)s

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(117)

It follows from Lemma 1 that (p, θ, m) is an equilibrium in elementary securities for
economy (e, δ) if, and only if, G(p, θ, m, e, δ) = 0.

Lemma 13 Function G is transverse to 0. That is, whenever G(p, θ, m, e, δ) = 0,
matrix ∂G(p, θ, m, e, δ) has full (row) rank.

Proof Let (p, θ, m, e, δ) be such that G(p, θ, m, e, δ) = 0. Since each θ i
s > −ei

s and
∑

i θ i = 0, it follows that each θ i
s ≤ ∑

j ei
s <

∑
j ē j

s + Iε, and then, by construction,

it follows that for any x in a neighborhood of ei + θ i ,

ui (x, δi ) = ūi (x) + 1

2
xTδi x . (118)

By direct computation, and considering only the derivatives with respect to
(θ1, . . . , θ I , e1) and (m1, . . . , m I , δ1, . . . , δ I ), matrix ∂G(p, θ, m, e, δ) can be writ-
ten in partition form as

� =
(

�1,1 �1,2
�2,1 �2,2

)

, (119)

where45 �2,2 = (�L
2,2 �R

2,2) ,

�1,1 =

⎛

⎜
⎜
⎜
⎝

m1 − ∂2ū1 − δ1 · · · 0 −∂2ū1 − δ1

...
. . .

...
...

0 · · · m I − ∂2ū I − δ I 0
I · · · I 0

⎞

⎟
⎟
⎟
⎠

, (120)

45 The precise form of matrix �2,1 is immaterial for computations below.
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�1,2 =

⎛

⎜
⎜
⎜
⎝

diag(θ1
s ) · · · 0 −diag(θ1

s ) · · · 0
...

. . .
...

...
. . .

...

0 · · · diag(θ I
s ) 0 · · · −diag(θ I

s )

0 · · · 0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

, (121)

�L
2,2 =

⎛

⎜
⎜
⎜
⎝

∑
j �=1(m

j − ∂2ū j − δ j )−1 · · · −diag(
m1

s
(m I

s −∂2ū I
s −δ I

s )2 )

...
. . .

...

−diag(
m I

s
(m1

s −∂2ū1
s −δ1

s )2 ) · · · ∑
j �=I (m

j − ∂2ū j − δ j )−1

⎞

⎟
⎟
⎟
⎠

(122)

and

�R
2,2 =

⎛

⎜
⎜
⎜
⎝

0 · · · diag(
m1

s
(m I

s −∂2ū I
s −δ I

s )2 )

...
. . .

...

diag(
m I

s
(m1

s −∂2ū1
s −δ1

s )2 ) · · · 0

⎞

⎟
⎟
⎟
⎠

. (123)

Notice that matrix �1,1 is nonsingular, by standard arguments, given our assump-
tions on concavity of preferences and the fact that each price impact matrix is positive
definite.46 Then, to see that � has full row rank, it suffices to observe that there exists
an (SI + S + SI + SI ) × SI matrix A such that

�A =
(

0
I

)

. (125)

For this, just let matrix

A =
(

0
A2

)

, (126)

46 To see this, the argument is the one that gives determinacy in competitive models: (i) notice that the
submatrix composed by the first I superrows and I supercolumns is nonsingular, since it is a diagonal
matrix of positive numbers: each mi

s > 0 and each ∂2ūi
s (e

i
s + θ i

s ) + δi
s < 0, as ui

s (·, δi
s ) is strongly

concave; (ii) Now, to see that the whole �1,1 is nonsingular, it suffices to observe that if one constructs
the S(I + 1) × S matrix A by letting the first S × S superrow be I, letting the last S × S superrow be
−(∂2ū1(ei + θ i ) + δ1)−1(m1 − ∂2ū1 − δ1), and letting every other element be 0, we get, by direct
computation, that

�1,1 A =
(

0
I

)

. (124)
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where

A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1 . . . 0
...

. . .
...

0 . . . m I

m1 . . . 0
...

. . .
...

0 . . . m I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (127)

By direct computation, the result follows from the fact that, for each i ,

mi
∑

j �=i

(m j − ∂2ū j (e j + θ j ) − δ j )−1 = I (128)

�	
Now, we argue that for almost all economies in the finite-dimensional subspace of

economies all equilibria are locally isolated.

Lemma 14 For a full-measure subset of Bε(ē)× Bδ̄ (0)SI , it is true that for any equi-
librium in elementary securities ( p̄, θ̄ , m̄) there exists an open neighborhood in which
there are no more equilibria for the same economy.

Proof By Lemma 13 and the Transversality Theorem (see Guillemin and Pollack
1974), it follows that for any (e, δ) in a full measure subset of Bε(ē) × Bδ̄(0)SI , func-
tion G(·, e, δ) is transverse to 0. If ( p̄, θ̄ , m̄) is an equilibrium for (e, δ), it must be
that G( p̄, θ̄ , m̄, e, δ) = 0, and hence that ∂p,θ,mG( p̄, θ̄ , m̄, e, δ) has full row rank. But
∂p,θ,mG is a square matrix, so ∂p,θ,mG( p̄, θ̄ , m̄, e, δ) is nonsingular and hence, by the
inverse function theorem, G(·, e, δ) is a bijection in a neighborhood of ( p̄, θ̄ , m̄). �	

A2.2.3. Denseness

The last lemma shows that in almost every economy in the finite-dimensional sub-
space, the property of local uniqueness holds. To complete our argument that the set
of economies where the property holds is dense in the general space of economies, it
suffices to show that the finite subspace of economies intersects the pre-fixed neigh-
borhood O of {ū, ē}. But this is true, because the topology with which the space of
economies is endowed is metrizable (see Villanacci et al. 2002, p. 428), and in this
metric the distance from ūi

s = ui
s(·, 0) to ui

s(·, δi
s) can be made arbitrarily small by

choosing a small enough δi
s > 0.
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